Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice
-
Abstract
We study a two-dimensional lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the two-dimensional Klein-Gordon lattice with hard on-site potential. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.
Article Text
-
-
-
About This Article
Cite this article:
XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 040501. DOI: 10.1088/0256-307X/26/4/040501
XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 040501. DOI: 10.1088/0256-307X/26/4/040501
|
XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 040501. DOI: 10.1088/0256-307X/26/4/040501
XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 040501. DOI: 10.1088/0256-307X/26/4/040501
|