Optical and Structural Properties of Mn-Doped GaN Grown by Metal Organic Chemical Vapour Deposition

  • Received Date: September 09, 2008
  • Published Date: February 28, 2009
  • Mn-doped GaN epitaxial films were grown by metal organic chemical vapour deposition (MOCVD). Micro-structural properties of films are investigated using Raman scattering. It is found that with increasing Mn-dopants levels, longitudinal optical phonon mode A1(LO) of films is broadened and shifted towards lower frequency. This phenomenon possibly derives from the difference in bonding strength between Ga-N pairs and Mn-N pairs in host lattice. In addition, optical properties of films are investigated using cathodoluminescence and absorption spectroscopy. Mn-related both emission band around 3.0eV and absorption bands around 1.5 and 2.95eV are observed. By studies on structural and optical properties of Mn-doped GaN, we find that Mn ions substitute for Ga sites in host lattice. However, carrier-mediated ferromagnetic exchange seems unlikely due to deep levels of Mn acceptors.
  • Article Text

  • [1] Wolf S A et al 2001 Science 294 1488
    [2] Dietl T et al 2000 Science 287 1019
    [3] Reed M L et al 2001 Appl. Phys. Lett. 79 3473
    [4] Thaler G T et al 2002 Appl. Phys. Lett. 803964
    [5] Xu J, Li J, Zhang R, Xiu X Q, Lu D Q, Yu H Q, Gu S L, ShenB, Shi Y, Ye YD, Zheng Y D 2003 Opt. Mater. 23 163 Theodoropoulou N et al 2001 Appl. Phys. Lett. 783475
    [6] Reed M J et al 2005 Appl. Phys. Lett. 86102504 Kane M H et al 2006 J. Cryst. Growth 287 591
    [7] Graf T et al 2002 Appl. Phys. Lett. 81 5159
    [8] Korotkov R Y, Gregie J M, Wessels B W 2002 Appl.Phys. Lett. 80 1731
    [9] Seo S S A et al 2003 Appl. Phys. Lett. 82 4749
    [10] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat.Mater. 4 173
    [11] Akai H 1998 Phys. Rev. Lett. 81 3002
    [12] Rao B K, Jena P 2002 Phys. Rev. Lett. 89185504
    [13] Pearton S J et al 2004 J. Phys.: Condens. Matter. 16 R209
    [14] Harima H 2004 J. Phys: Condens. Matter 16S5653
    [15] Hasuike N et al 2004 J. Phys.: Condens. Matter. 16 S5811
    [16] Gebicki W et al 2000 Appl. Phys. Lett. 763780
    [17] Limmer W et al 1998 Appl. Phys. Lett. 72 2589
    [18] Korotkov R Y, Gregie J M and Wessels B W 2002 Physica B 308--310 30
    [19] Bantien F and Beber J 1988 Phys. Rev. B 3710111
    [20] Langer D W, Richter H J 1966 Phys. Rev. 146554
    [21] McClure D S 1954 Solid State Phys. 9 488
    [22] Xu S J et al 1998 Appl. Phys. Lett. 72 2451
    [23] Toth M, Fleischer K, Phillips M R1999 Phys. Rev. B 59 1575
    [24] Reshchikov M A et al 2000 J. Appl. Phys. 873351
    [25] Winnewisser C et al 2001 J. Appl. Phys. 893091
    [26] Kronik L, Jain M and Chelikowsky J R 2002 Phys.Rev. B 66 041203
  • Related Articles

    [1]DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201
    [2]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [3]LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205
    [4]WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314.
    [5]LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364.
    [6]MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315.
    [7]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [8]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [9]ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723.
    [10]TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.

Catalog

    Article views (2) PDF downloads (819) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return