Optical and Structural Properties of Mn-Doped GaN Grown by Metal Organic Chemical Vapour Deposition
-
Abstract
Mn-doped GaN epitaxial films were grown by metal organic chemical vapour deposition (MOCVD). Micro-structural properties of films are investigated using Raman scattering. It is found that with increasing Mn-dopants levels, longitudinal optical phonon mode A1(LO) of films is broadened and shifted towards lower frequency. This phenomenon possibly derives from the difference in bonding strength between Ga-N pairs and Mn-N pairs in host lattice. In addition, optical properties of films are investigated using cathodoluminescence and absorption spectroscopy. Mn-related both emission band around 3.0eV and absorption bands around 1.5 and 2.95eV are observed. By studies on structural and optical properties of Mn-doped GaN, we find that Mn ions substitute for Ga sites in host lattice. However, carrier-mediated ferromagnetic exchange seems unlikely due to deep levels of Mn acceptors. -
References
[1] Wolf S A et al 2001 Science 294 1488 [2] Dietl T et al 2000 Science 287 1019 [3] Reed M L et al 2001 Appl. Phys. Lett. 79 3473 [4] Thaler G T et al 2002 Appl. Phys. Lett. 803964 [5] Xu J, Li J, Zhang R, Xiu X Q, Lu D Q, Yu H Q, Gu S L, ShenB, Shi Y, Ye YD, Zheng Y D 2003 Opt. Mater. 23 163 Theodoropoulou N et al 2001 Appl. Phys. Lett. 783475 [6] Reed M J et al 2005 Appl. Phys. Lett. 86102504 Kane M H et al 2006 J. Cryst. Growth 287 591 [7] Graf T et al 2002 Appl. Phys. Lett. 81 5159 [8] Korotkov R Y, Gregie J M, Wessels B W 2002 Appl.Phys. Lett. 80 1731 [9] Seo S S A et al 2003 Appl. Phys. Lett. 82 4749 [10] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat.Mater. 4 173 [11] Akai H 1998 Phys. Rev. Lett. 81 3002 [12] Rao B K, Jena P 2002 Phys. Rev. Lett. 89185504 [13] Pearton S J et al 2004 J. Phys.: Condens. Matter. 16 R209 [14] Harima H 2004 J. Phys: Condens. Matter 16S5653 [15] Hasuike N et al 2004 J. Phys.: Condens. Matter. 16 S5811 [16] Gebicki W et al 2000 Appl. Phys. Lett. 763780 [17] Limmer W et al 1998 Appl. Phys. Lett. 72 2589 [18] Korotkov R Y, Gregie J M and Wessels B W 2002 Physica B 308--310 30 [19] Bantien F and Beber J 1988 Phys. Rev. B 3710111 [20] Langer D W, Richter H J 1966 Phys. Rev. 146554 [21] McClure D S 1954 Solid State Phys. 9 488 [22] Xu S J et al 1998 Appl. Phys. Lett. 72 2451 [23] Toth M, Fleischer K, Phillips M R1999 Phys. Rev. B 59 1575 [24] Reshchikov M A et al 2000 J. Appl. Phys. 873351 [25] Winnewisser C et al 2001 J. Appl. Phys. 893091 [26] Kronik L, Jain M and Chelikowsky J R 2002 Phys.Rev. B 66 041203 -
Related Articles
[1] DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201 [2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201 [3] LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205 [4] WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314. [5] LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364. [6] MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315. [7] YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627. [8] YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67. [9] ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723. [10] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.