FDTD Investigation on Electromagnetic Scattering from Two-Layered Rough Surfaces under UPML Absorbing Condition

  • Received Date: October 29, 2008
  • Published Date: February 28, 2009
  • Electromagnetic scattering from one-dimensional two-layered rough surfaces is investigated by using finite-difference time-domain algorithm (FDTD). The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. The rough surfaces are characterized with Gaussian statistics for the height and the autocorrelation function. The angular distribution of bistatic scattering coefficient from single-layered perfect electric conducting and dielectric rough surface is calculated and it is in good agreement with the numerical result with the conventional method of moments. The influence of the relative permittivity, the incident angle, and the correlative length of two-layered rough surfaces on the bistatic scattering coefficient with different
  • Article Text

  • [1] Guo L X and Wu Z S 2002 Chin. Phys. Lett. 191617
    [2] Ren X C and Guo L X 2008 Chin. Phys. Lett. 25101
    [3] Ren Y C and Guo L X 2007 Chin. Phys. Lett. 2497
    [4] Duss'eaux R 2001 Progress in ElectromagneticsResearch 34 63
    [5] Inan K and Ert\"{urk V B 2006 IEEE Trans. Geosci.Remote Sensing 44 3320
    [6] Tabatabaeenejad A and Moghaddam M 2006 IEEE Trans.Geosci. Remote Sensing 44 2102
    [7] Kuo C H and Moghaddam M 2006 IEEE Trans. AntennasPropagat. 54 2917
    [8] Moss C D et al 2006 IEEE Trans. Antennas Propagat. 54 1006
    [9] Kuga Y and Phu P 1996 Progress In ElectromagneticsResearch, PIER 14 37
    [10] Gedney S D 1996 IEEE Trans. Antennas Propagat. 44 1630
    [11] Gedney S D 1996 Electromagnetics 16 425
    [12] Taflove A and Hagness S C 1995 ComputationalElectrodynamics: The Finite-Difference Time-Domain Method(Boston: Artech House)
    [13] Juntunen J S and Tsiboukis T D 2000 IEEE Trans.Microwave Theory Technol. 58 582
    [14] Fung A K et al 1995 IEEE Trans. Geosci. RemoteSensing 32 986
    [15] Kong J A 1986 Electromagnetic Wave Theory (NewYork: Wiley)
    [16] Tsang L et al 2001 Scattering of ElectromagneticWaves (New York: John Wiley {\& Sons. Inc.)
    [17] Curtis J 1996 Dielectric Properties of Soils:Various Sites in Bosnia (U.S. Army Corp. Eng., Washington, DC,Waterways Experiment, Station Data Rep.)
  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]DOU Quan-Tao, ZUO Guang-Hong, FANG Hai-Ping. Interaction between a Functionalized Single-Walled Carbon Nanotube and the YAP65WW Protein Domain: a Molecular Dynamics Simulation Study [J]. Chin. Phys. Lett., 2012, 29(6): 068701. doi: 10.1088/0256-307X/29/6/068701
    [3]GAO Yu-Feng, SUN De-Yan. Molecular-Dynamics Simulations of Droplets on a Solid Surface [J]. Chin. Phys. Lett., 2010, 27(6): 066802. doi: 10.1088/0256-307X/27/6/066802
    [4]LI Jiu-Kai, TIAN Xiao-Feng. Molecular Dynamics Simulations of Thermal Properties of Solid Uranium Dioxide [J]. Chin. Phys. Lett., 2010, 27(3): 036501. doi: 10.1088/0256-307X/27/3/036501
    [5]HUANG Xiao-Peng, HUAI Xiu-Lan. Molecular Dynamics Simulation of Thermal Conductivity in Si--Ge Nanocomposites [J]. Chin. Phys. Lett., 2008, 25(8): 2973-2976.
    [6]SUN Tie-Ying, LONG Xing-Gui, WANG Jun, HOU Qing, WU Zhong-Cheng, PENG Shu-Ming, LUO Shun-Zhong. Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals [J]. Chin. Phys. Lett., 2008, 25(5): 1784-1787.
    [7]ZENG Zhao-Yi, CHEN Xiang-Rong, ZHU Jun, HU Cui-E. Phase Transition and Melting Curves of Calcium Fluoride via Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2008, 25(1): 230-233.
    [8]ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of [J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
    [9]WANG Ling, NING Xi-Jing. Molecular Dynamics Simulations of Helium Behaviour in Copper Crystals [J]. Chin. Phys. Lett., 2003, 20(9): 1416-1419.
    [10]FENG Xiao-Li, LI Zhi-Xin, GUO Zeng-Yuan. Size Effect of Lattice Thermal Conductivity Across NanoscaleThin Films by Molecular Dynamics Simulations [J]. Chin. Phys. Lett., 2001, 18(3): 416-418.

Catalog

    Article views (4) PDF downloads (1566) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return