Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System
-
Abstract
Special Lie symmetry and Hojman conserved quantity of Appell equations for a holonomic system are studied. Appell equations and differential equations of motion for holonomic mechanic systems are established. Under special Lie nfinitesimal transformations in which the time is invariable, the determining equation of the special Lie symmetry and the expressions of Hojman conserved quantity for Appell equations of holonomic systems are presented. Finally, an example is given to illustrate the application of the results.
Article Text
-
-
-
About This Article
Cite this article:
JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 030303. DOI: 10.1088/0256-307X/26/3/030303
JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 030303. DOI: 10.1088/0256-307X/26/3/030303
|
JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 030303. DOI: 10.1088/0256-307X/26/3/030303
JIA Li-Qun, CUI Jin-Chao, LUO Shao-Kai, YANG Xin-Fang. Special Lie Symmetry and Hojman Conserved Quantity of Appell Equations for a Holonomic System[J]. Chin. Phys. Lett., 2009, 26(3): 030303. DOI: 10.1088/0256-307X/26/3/030303
|