Eccentricity Scaling of Elliptic Flow in Relativistic Au+Au Collisions

  • Received Date: July 27, 2008
  • Published Date: January 31, 2009
  • Elliptic flow for Au+Au non-central collisions at √sNN=200GeV is investigated within a (2+1)-dimensional hydrodynamic model. The results show that the eccentricity scaling for the collisions is almost perfect. The evolution including the phase transition conforms to the demand of scaling invariance of hydrodynamics of the collision system.
  • Article Text

  • [1] Ollitrault J Y 1992 Phys. Rev. D 46 229
    [2] Adcox K et al (PHENIX Collaboration) 2002 Phys. Rev.Lett. 89 212301
    [3] Adler C et al (STAR Collaboration) 2002 Phys. Rev.Lett. 89 132301
    [4] Long J L, He Z J, Ma G L, Ma Y G, Liu Bo 2004 Chin.Phys. Lett. 21 47
    [5] Feng Q C, Zhang J B, Huo L and Zhang W N 2007 HighEnergy Phys. Nucl. Phys. 30 736 Feng Q C, Zhang J B, Huo L and Zhang W N 2007 HighEnergy Phys. Nucl. Phys. 30 633
    [6] Huovinen P, Kolb P F, Heinz U, Ruuskanen P V, Voloshin SA 2001 Phys. Lett. B 503 58
    [7] Teaney D, Lauret J, Shuryak E V 2001 Phys. Rev.Lett. 86 4783
    [8] Kolb P F et al 2001 Nucl. Phys. A 696 197
    [9] Xu X M 2005 Chin. Phys. Lett. 22 1631
    [10] Heinz U W and Kolb P F 2002 Nucl. Phys. A 702269
    [11] Molnar D and Gyulassy M 2002 Nucl. Phys. A 697 495
    [12] Teaney D 2004 Nucl. Phys. A 715 817c
    [13] Issah M and Taranenko A 2006 {Arxiv:nucl-ex 0604011
    [14] Bhalerao R S, Blaizot J P and Borghini N 2005 Phys.Lett. B 627 49
    [15] Kolb P F, Sollfrank J and Heinz U 2000 Phys. Rev. C 62 054909
    [16] Shuryak E V 2004 Prog. Part. Nucl. Phys. 53273
    [17] Kolb P F and Rapp R 2000 Phys. Rev. C 67044903
    [18] Kolb P F and Heinz U 2000 nucl-th 0305084
    [19] Sollfrank J, Koch P and Heinz U 1990 Phys. Lett. B 252 256
    [20] Sollfrank J, Koch P and Heinz U 1991 Z. Phys. C 52 593
    [21] Sollfrank J, Huovinen P, Kataja M et al 1997 Phys.Rev. C 55 392
    [22] Dong X, Esumi S and Sorensen P 2004 Phys. Lett. B 597 328
    [23] Kolb P F, Sollfrank J and Heinz U W 1999 Phys.Lett. B 459 667
    [24] Kolb P F and Heinz U 2003 Nucl. Phys. A 715653c
    [25] Ollitrault J Y 2008 Eur. J. Phys. 29 275
    [26] Drescher H J and Dumitru A 2007 Phys. Rev. C 76 024905
  • Related Articles

    [1]LIU Yuan, JIA Ya-Fei, LI Wei-Dong. Fermi-Decay Law of Bose–Einstein Condensate Trapped in an Anharmonic Potential [J]. Chin. Phys. Lett., 2012, 29(4): 040304. doi: 10.1088/0256-307X/29/4/040304
    [2]HAO Ya-Jiang. Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap [J]. Chin. Phys. Lett., 2011, 28(1): 010302. doi: 10.1088/0256-307X/28/1/010302
    [3]YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas [J]. Chin. Phys. Lett., 2010, 27(8): 080305. doi: 10.1088/0256-307X/27/8/080305
    [4]XIONG De-Zhi, CHEN Hai-Xia, WANG Peng-Jun, YU Xu-Dong, GAO Feng, ZHANG Jing. Quantum Degenerate Fermi--Bose Mixtures of 40K and 87Rb Atoms in a Quadrupole-Ioffe Configuration Trap [J]. Chin. Phys. Lett., 2008, 25(3): 843-846.
    [5]ZHANG Peng-Fei, ZHANG Hai-Chao, XU Xin-Ping, WANG Yu-Zhu. Monte Carlo Simulation of Cooling Induced by Parametric Resonance [J]. Chin. Phys. Lett., 2008, 25(1): 89-92.
    [6]WANG Jin-Feng, LIU Yang, XU You-Sheng, WU Feng-Min. Lattice Boltzmann Simulation for the Optimized Surface Pattern in a Micro-Channel [J]. Chin. Phys. Lett., 2007, 24(10): 2898-2901.
    [7]MA Yong-Li. Phase Diagram and Phase Separation of a Trapped Interacting Bose--Fermi Gas Mixture [J]. Chin. Phys. Lett., 2004, 21(12): 2355-2358.
    [8]LIU Rang-Su, DONG Ke-Jun, LI Ji-Yon, YU Ai-Bing, ZOU Rui-Ping. Molecular Dynamics Simulation of Microstructure Transitions in a Large-Scale Liquid Metal Al System During Rapid Cooling Processes [J]. Chin. Phys. Lett., 2002, 19(8): 1144-1147.
    [9]LIU Chang-Song, ZHU Zhen-Gang, XIA Jun-Chao, SUN De-Yan. Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation [J]. Chin. Phys. Lett., 2000, 17(1): 34-36.
    [10]CHEN Yixin, NI Guangjiong. DIRAC-BERGMANN FORMALISM OF THE FERMI-BOSE TRANSMUTATION IN (2+1)-DIMENSIONS [J]. Chin. Phys. Lett., 1990, 7(10): 433-436.

Catalog

    Article views (0) PDF downloads (492) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return