N-Soliton Solution of a Generalized Hirota-Satsuma Coupled KdV Equation and Its Reduction
1 Institute of Electronic Technology, the PLA Information Engineering University, Zhengzhou 450004 2 Department of Mathematics, Zhengzhou University, Zhengzhou 450052 3 Zhengzhou Pilot Primary School of Economic and Technological Development Area, Zhengzhou 450016
Received Date:
November 25, 2008
Published Date:
January 31, 2009
Abstract
Based on the Hirota method and the perturbation technique, the N-soliton solution of a generalized Hirota-Satsuma coupled KdV equation is obtained. Further, the N-soliton solution of a complex coupled KdV equation is given by reducing.
Article Text
References
[1]
Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transform (Philadelphia, PA: SIAM)
[2]
Novikov S P, Manakov S V, Pitaevskii L P and Zakharov VE 1984 Theory of Solitons, the Inverse Scattering Methods(New York: Consultants Bureau)
[3]
Levi D 1988 Inverse Problems 4 165
[4]
Matveev V B, Salle M A 1991 Darboux Transformationsand Solitons (Berlin: Springer)
[5]
Hirota R 2004 The Direct Methods in Soliton Theory(Cambridge: Cambridge University Press)
[6]
Hirota R and Ohta Y 1991 J. Phys. Soc. Jpn. 60798
[7]
Ma W X and You Y C 2005 Trans. Amer. Math. Soc. 357 1753
[8]
Ma W X and Maruno K I 2004 Physica A 343 219
[9]
Geng X G 2003 J. Phys. A: Math. Gen. 36 2289
[10]
Hirota R and Satsuma J 1989 J. Phys. Soc. Jpn. 58 2285
[11]
Ma W X and Pavlov M 1998 Phys. Lett. A 246511
[12]
Ma W X 1998 J. Phys. A: Math. Gen. 31 7279
[13]
Wu Y T, Geng X G, Hu X B and Zhu S M 1999 Phys.Lett. A 255 259
[14]
Fan E G and Hon B Y C 2002 Phys. Lett. A 292 335
[15]
Ganji D D, Rafei M 2006 Phys. Lett. A 356 131
Related Articles
[1] CUI Kai. New Wronskian Form of the N -Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2012, 29(6): 060508. doi: 10.1088/0256-307X/29/6/060508
[2] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060204. doi: 10.1088/0256-307X/28/6/060204
[3] CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N -Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060202. doi: 10.1088/0256-307X/28/6/060202
[4] LIANG Zu-Feng, TANG Xiao-Yan. Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation [J]. Chin. Phys. Lett., 2010, 27(3): 030201. doi: 10.1088/0256-307X/27/3/030201
[5] ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan. N-Soliton Solutions of Non-Isospectral Derivative Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(3): 030202. doi: 10.1088/0256-307X/26/3/030202
[6] XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
[7] SU Ting, GENG Xian-Guo, MA Yun-Ling. Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2007, 24(2): 305-307.
[8] YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
[9] YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
[10] LIU Shanliang, WANG Wenzheng, XU Jingzhi. Exact N-Soliton Solutions for the Higher-Order Nonlinear Schrödinger Equation Under Another Condition [J]. Chin. Phys. Lett., 1994, 11(12): 737-740.
About This Article
Cite this article:
WU Jian-Ping, GENG Xian-Guo, ZHANG Xiao-Lin. N-Soliton Solution of a Generalized Hirota-Satsuma Coupled KdV Equation and Its Reduction[J].
Chin. Phys. Lett. , 2009, 26(2): 020202.
DOI: 10.1088/0256-307X/26/2/020202
WU Jian-Ping, GENG Xian-Guo, ZHANG Xiao-Lin. N-Soliton Solution of a Generalized Hirota-Satsuma Coupled KdV Equation and Its Reduction[J]. Chin. Phys. Lett. , 2009, 26(2): 020202. DOI: 10.1088/0256-307X/26/2/020202