N-Soliton Solution of a Generalized Hirota-Satsuma Coupled KdV Equation and Its Reduction

  • Received Date: November 25, 2008
  • Published Date: January 31, 2009
  • Based on the Hirota method and the perturbation technique, the N-soliton solution of a generalized Hirota-Satsuma coupled KdV equation is obtained. Further, the N-soliton solution of a complex coupled KdV equation is given by reducing.
  • Article Text

  • [1] Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transform (Philadelphia, PA: SIAM)
    [2] Novikov S P, Manakov S V, Pitaevskii L P and Zakharov VE 1984 Theory of Solitons, the Inverse Scattering Methods(New York: Consultants Bureau)
    [3] Levi D 1988 Inverse Problems 4 165
    [4] Matveev V B, Salle M A 1991 Darboux Transformationsand Solitons (Berlin: Springer)
    [5] Hirota R 2004 The Direct Methods in Soliton Theory(Cambridge: Cambridge University Press)
    [6] Hirota R and Ohta Y 1991 J. Phys. Soc. Jpn. 60798
    [7] Ma W X and You Y C 2005 Trans. Amer. Math. Soc. 357 1753
    [8] Ma W X and Maruno K I 2004 Physica A 343 219
    [9] Geng X G 2003 J. Phys. A: Math. Gen. 36 2289
    [10] Hirota R and Satsuma J 1989 J. Phys. Soc. Jpn. 58 2285
    [11] Ma W X and Pavlov M 1998 Phys. Lett. A 246511
    [12] Ma W X 1998 J. Phys. A: Math. Gen. 31 7279
    [13] Wu Y T, Geng X G, Hu X B and Zhu S M 1999 Phys.Lett. A 255 259
    [14] Fan E G and Hon B Y C 2002 Phys. Lett. A 292 335
    [15] Ganji D D, Rafei M 2006 Phys. Lett. A 356 131
  • Related Articles

    [1]CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2012, 29(6): 060508. doi: 10.1088/0256-307X/29/6/060508
    [2]WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060204. doi: 10.1088/0256-307X/28/6/060204
    [3]CHEN Shou-Ting, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan. N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060202. doi: 10.1088/0256-307X/28/6/060202
    [4]LIANG Zu-Feng, TANG Xiao-Yan. Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation [J]. Chin. Phys. Lett., 2010, 27(3): 030201. doi: 10.1088/0256-307X/27/3/030201
    [5]ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan. N-Soliton Solutions of Non-Isospectral Derivative Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(3): 030202. doi: 10.1088/0256-307X/26/3/030202
    [6]XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
    [7]SU Ting, GENG Xian-Guo, MA Yun-Ling. Wronskian Form of N-Soliton Solution for the (2+1)-Dimensional Breaking Soliton Equation [J]. Chin. Phys. Lett., 2007, 24(2): 305-307.
    [8]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [9]YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67.
    [10]LIU Shanliang, WANG Wenzheng, XU Jingzhi. Exact N-Soliton Solutions for the Higher-Order Nonlinear Schrödinger Equation Under Another Condition [J]. Chin. Phys. Lett., 1994, 11(12): 737-740.

Catalog

    Article views (1) PDF downloads (1548) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return