Bond-Alternating Antiferromagnetic S=1/2 Heisenberg Ladder with Ferromagnetic Diagonal Coupling

  • Received Date: October 07, 2009
  • Published Date: November 30, 2009
  • Using the density matrix renormalization group method, we determine the phase diagram of a frustrated bond-alternating S=1/2 Heisenberg ladder with ferro-antiferromagnetic couplings at zero temperature. With the interactions between spins along the rungs set, we identify three spin-gapped phases (the Haldane phase, the singlet phase and the dimer phase) in the whole parameter range. The analysis of our data shows that two-leg spin bond-alternating ladders have a rich phase diagram if both rung and diagonal couplings are taken into account.
  • Article Text

  • [1] Dagotto E et al 1992 Phys. Rev. B 45 5744
    [2] Neaf F and Wang X 2000 Phys. Rev. Lett. 84 1320
    [3] White S R et al 1994 Phys. Rev. Lett. 73 886
    [4] Azuma M et al 1994 Phys. Rev. Lett. 73 3463
    [5] Japaridze G I and Pogosyan E 2006 cond-mat/0603153v1
    [6] Luca Capriotti et al 2004 Phys. Rev. Lett. 9317
    [7] Liu G H, Wang H L, and Tian G S 2008 Phys. Rev. B 77 214418
    [8] Guo J L, Wang X L, and Song H S 2007 Chin. Phys.Lett. 24 1448
    [9] Liu Z S, Divis Martin, and Sechovsk\'{y Vladimir 2007 Chin. Phys. Lett. 24 1448
    [10] Affleck I 1989 J. Phys.C: Cond. Matt. l 3047
    [11] Greven M et al 1996 Phys. Rev. Lett. 77 1865
    [12] Almeida J et al 2007 Phys. Rev. B 76 184428
    [13] Haldane F D M 1982 Phys. Lett. A 93 464
    [14] Schollw\"ock 2005 Rev. Mod. Phys. 77 259
    [15] White S R 1992 Phys. Rev. Lett. 69 2863
    [16] White S R 1993 Phys. Rev. B 48 10345
    [17] Keisuke Totsukat et al 1995 J. Phys. C: Condens.Matter 7 4895
    [18] Kohno M, Takahashi M and Hagiwara M 1998 Phys. Rev.B 57 1046
    [19] Den Nijs M P M and Rommelse K 1989 Phys. Rev. B 40 4709
    [20] White S R and Huse David A 1993 Phys. Rev. B 48 6
    [21] F\'ath G, Legeza \"O and S\'olyom J 2001 Phys. Rev.B 63 134403
    [22] Zhu N S, Wang X Q and Chen C F 2000 Phys. Rev. B 63 012401
    [23] Hung H H et al 2006 Phys. Rev. B 73 224433
    [24] Hida K 1992 Phys. Rev. B 45 2207
  • Related Articles

    [1]ZHANG Yin, DONG Jian-Ji, LEI Lei, HE Hao, HUANG De-Xiu, ZHANG Xin-Liang. A 40-Gbit/s 1-to-2 Photonic Data Distributor Employing a Single Semiconductor Optical Amplifier [J]. Chin. Phys. Lett., 2011, 28(6): 064212. doi: 10.1088/0256-307X/28/6/064212
    [2]LI Deng-Feng, XIAO Hai-Yan, XUE Shu-Wen, YANG Li, ZU Xiao-Tao. Surface Structure and Electronic Property of InP(001)-(2×1)S Surface: A First-Principles Study [J]. Chin. Phys. Lett., 2010, 27(4): 046802. doi: 10.1088/0256-307X/27/4/046802
    [3]DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings [J]. Chin. Phys. Lett., 2009, 26(10): 107503. doi: 10.1088/0256-307X/26/10/107503
    [4]DENG Jiang-Xia, YAN Shi-Shen, MEI Liang-Mo, J. P. Liu, B. Altuncevahir, V. Chakka, WANG Yong, ZHANG Ze, SUN Xiang-Cheng, J. Lian, K. Sun. Magnetic Properties and Antiferromagnetic Coupling in Inhomogeneous Zn1-xFexO Magnetic Semiconductor [J]. Chin. Phys. Lett., 2009, 26(2): 027502. doi: 10.1088/0256-307X/26/2/027502
    [5]SHANG Yu-Min, YAO Kai-Lun. Translational Invariance in Phase Diagram of S=1/2, 3/2 Spin Glass Systems [J]. Chin. Phys. Lett., 2005, 22(1): 195-198.
    [6]JIANG Xue-Fan, XING Ding-Yu, CHEN Hong. Temperature Dependence of Energy Gaps in Spin-1/2 Dimerized Heisenberg Chain [J]. Chin. Phys. Lett., 2002, 19(4): 560-562.
    [7]ZHU Shan-Hua, HUANG Guo-Xiang. Coupled Solitons in Alternating Heisenberg Ferromagnetic Chains with a Small Magnon Band Gap [J]. Chin. Phys. Lett., 2001, 18(10): 1316-131.
    [8]YUN Guo-Hong, LIANG Xi-Xia. Specific Heat of the Spin-1/2 Antiferromagnetic Heisenberg Chain [J]. Chin. Phys. Lett., 2001, 18(9): 1261-1263.
    [9]WANG Xian-Zhi. Yang-Lee Circle Theorem for an Antiferromagnetic Heisenberg Ladder [J]. Chin. Phys. Lett., 2001, 18(7): 953-954.
    [10]LU Wei, SHEN Xuechu, LIU Pulin, M. von Ortenberg, J . Tuchendler, J . P. Renard, ZHENG Fen. Far Infrared Resonance Transition Study of the Chain-End S = 1/2 Modes in an S = 1 Antiferromagnetic Chain [J]. Chin. Phys. Lett., 1995, 12(5): 313-316.

Catalog

    Article views (0) PDF downloads (973) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return