Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence
-
Abstract
The non-equilibrium Green's function (NEGF) technique provides a solid foundation for the development of quantum mechanical simulators. However, the convergence is always of great concern. We present a general analytical formalism to acquire the accurate derivative of electron density with respect to electrical potential in the framework of NEGF. This formalism not only provides physical insight on non-local quantum phenomena in device
simulation, but also can be used to set up a new scheme in solving the Poisson equation to boost the performance of convergence when the NEGF and Poisson equations are solved self-consistently. This method is illustrated by a simple one-dimensional example of an N++N+N++ resistor. The total simulation time and iteration number are largely reduced.
Article Text
-
-
-
About This Article
Cite this article:
YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 117203. DOI: 10.1088/0256-307X/26/11/117203
YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 117203. DOI: 10.1088/0256-307X/26/11/117203
|
YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 117203. DOI: 10.1088/0256-307X/26/11/117203
YUAN Ze, CHEN Zhi-Dong, ZHANG Jin-Yu, HE Yu, ZHANG Ming, YU Zhi-Ping. Derivative of Electron Density in Non-Equilibrium Green's Function Technique and Its Application to Boost Performance of Convergence[J]. Chin. Phys. Lett., 2009, 26(11): 117203. DOI: 10.1088/0256-307X/26/11/117203
|