Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations

  • Received Date: May 10, 2009
  • Published Date: October 31, 2009
  • We perform a first-principles study on the electronic structure and elastic properties of Ti3AlC with an antiperovskite structure. The absence of band gap at the Fermi level and the finite value of the density of states at the Fermi energy reveal the metallic behavior of this compound. The elastic constants of Ti3AlC are derived yielding c11=356GPa, c12=55GPa, c44=157GPa. The bulk modulus B, shear modulus G and Young's modulus E are determined to be 156, 151 and 342GPa, respectively. These properties are compared with those of Ti3AlC2 and Ti2AlC with a layered structure in the Ti-Al-C system and Fe3AlC with the same antiperovskite structure.
  • Article Text

  • [1] Lopaci\'nski M, Puszynski J and Lis J 2001 J. Am.Ceram. Soc. 84 3051
    [2] Barsoum M W 2000 Prog. Solid State Chem. 28201
    [3] Matar S F, Petitcorps Y L and Etourneau J 1997 J.Mater. Chem. 7 99
    [4] Hong X L, Mei B C, Zhu J Q, and Zhou W B 2004 J.Mater. Sci. 39 1589
    [5] Wang X H and Zhou Y C 2002 Acta Mater. 50 3141
    [6] Zou Y, Sun Z M, Tada S and Hashimoto H 2007 ScriptaMater. 56 725
    [7] Zhou W B, Mei B C, Zhu J Q and Hong X L 2005 Mater.Lett. 59 131
    [8] Tian W H and Nemoto M 1999 Intermetallics 71261
    [9] Tian W H and Nemoto M 1997 Intermetallics 5237
    [10] Guo J M, Chen K X, Wang B S, Zhang H, Li X Q and Zhou H P2006 Rare Metal Mater. Engin. 35 1708
    [11] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J2007 WIEN2k, An Augmented Plane Wave Plus Local OrbitalsProgram for Calculating Crystal Properties (Austria: TechnologyUniveresitat Wien)
    [12] Jeitschko W, Nowotny H and Benesovky F 1964 MonotschChem. 95 319
    [13] Xiong B K, Gong K, Zhou J J, Yu B H, Chen D and Shi D H2008 Chin. Phys. Lett. 25 2592
    [14] Li Y L and Zeng Z 2008 Chin. Phys. Lett. 254086
    [15] Xu G L, Zhang D L, Xia Y Z, Liu X F, Liu Y F and Zhang XZ 2009 Chin. Phys. Lett. 26 046302
    [16] Sahara R, Shishido T, Nomura A, Kudou K, Okada S, KumarV, Nakajima K and Kawazoe Y 2006 Comput. Mater. Sci. 3612
    [17] Yao Q, Sun J, Lin D, Liu S and Jiang B 2007 Intermetallics 15 694
    [18] Conn\'{etable D and Maugis P 2008 Intermetallics 16 345
    [19] Wang J Y and Zhou Y C 2004 Phys. Rev. B 69214111
    [20] Ross, N L, Angel, R J, Kung, J and Chaplin T D 2002 Mater. Res. Soc. Sym. Proc. 718 115
  • Related Articles

    [1]GAN Sheng-Xin, U. Lombardo, U. Lombardo. Nucleon Effective Mass in Asymmetric Nuclear Matter within Extended Brueckner Approach [J]. Chin. Phys. Lett., 2012, 29(4): 042102. doi: 10.1088/0256-307X/29/4/042102
    [2]LI Zeng-Hua, ZUO Wei, GUO Wen-Jun. Single-Particle Properties of Isospin Asymmetric Nuclear Matter [J]. Chin. Phys. Lett., 2012, 29(1): 012102. doi: 10.1088/0256-307X/29/1/012102
    [3]WEN Jing, JIANG Hong-Bing, YU Jing, YANG Hong, GONG Qi-Huang. Broadband Asymmetric Conical Emission via Cascaded Second-Order Nonlinear Polarization during the Propagation of Femtosecond Laser Pulses in a BBO Crystal [J]. Chin. Phys. Lett., 2011, 28(6): 064207. doi: 10.1088/0256-307X/28/6/064207
    [4]LU Xiao-Hua, ZHANG Ying-Xun, LI Zhu-Xia, ZHAO Zhi-Xiang. Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas [J]. Chin. Phys. Lett., 2008, 25(11): 3932-3935.
    [5]TIAN Yuan, MA Zhong-Yu. A Separable Pairing Force in Nuclear Matter [J]. Chin. Phys. Lett., 2006, 23(12): 3226-3229.
    [6]ZHANG Xu-Ming, QIAN Wei-Liang, SU Ru-Keng. Liquid-Gas Phase Transition for Asymmetric Nuclear Matter in the Zimanyi-Moszkowski Model [J]. Chin. Phys. Lett., 2004, 21(7): 1240-1242.
    [7]LI Zeng-Hua, ZUO Wei, LU Guang-Cheng. Phase Transition of Hot Nuclear Matter [J]. Chin. Phys. Lett., 2004, 21(1): 29-32.
    [8]XU Chong-Ming, WU Xue-Jun. Extending the First-Order Post-Newtonian Scheme in Multiple Systems to the Second-Order Contributions to Light Propagation [J]. Chin. Phys. Lett., 2003, 20(2): 195-198.
    [9]LIU Ling, MA Zhong-Yu. A New Decomposition Approach of Dirac Brueckner Hartree-FockG Matrix for Asymmetric Nuclear Matter [J]. Chin. Phys. Lett., 2002, 19(2): 190-193.
    [10]WANG Nengping, YANG Shande. Compression Modulus of Finite Nuclear Matter at Zero Temperature [J]. Chin. Phys. Lett., 1995, 12(6): 338-341.

Catalog

    Article views (3) PDF downloads (1373) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return