Three-Body Faddeev Approach to Two-Proton Emissions from 18Ne Excited State

  • Received Date: March 31, 2009
  • Published Date: October 31, 2009
  • The proton drip line nucleus 18Ne is considered as a system of two protons and a 16O core. The excitation-energy spectrum of 18Ne and the relative-momentum distribution of the two protons emitted from the 6.15MeV level of 18Ne are calculated using the Faddeev approach.
  • Article Text

  • [1] V Goldansky 1960 Nucl. Phys. 19 480
    [2] Chromik M J et al 1997 Phys. Rev. C 55 1676
    [3] Zerguerras T et al 2004 Eur. Phys. J. A 20389
    [4] Giovinazzo J et al 2002 Phys. Rev. Lett. 89102501
    [5] Pfuetzner M et al 2002 Eur. Phys. J. A 14 279
    [6] Blank B et al 2005 Phys. Rev. Lett. 94 232501
    [7] Dossat C et al 2005 Phys. Rev. C 72 054315
    [8] Fu C B et al 2007 Phys. Rev. C 76 021603
    [9] Raciti G et al 2008 Phys. Rev. Lett. 100192503
    [10] Mukha I et al 2006 Nature 439 298
    [11] Mukha I et al 2007 Phys. Rev. Lett. 99182501
    [12] Brown B A 1991 Phys. Rev. C 43 R1513 Brown B A 1991 Phys. Rev. C 44 924(E)
    [13] Bartlett A J, Tostevin J A and Thompson I J 2008 Phys. Rev. C 78 054603
    [14] Rotureau J, Okolowicz J and Ploszajczak M 2005 Phys.Rev. Lett. 95 042503
    [15] Nielsen E, Fedorov D V, Jensen A S and Garrido E 2001 Phys. Rep. 347 374
    [16] Garrido E, Fedorov D V and Jensen A S 1999 Phys.Rev. C 59 1272
    [17] Garrido E, Fedorov D V and Jensen A S 2004 Phys.Rev. C 69 024002
    [18] Fei J et al 2009 Chin. Phys. Lett. 26 032301
    [19] Faddeev L D 1965 Mathematical Aspects ofThree-Body Problem in the Quantum Scattering Theory (Hartford:Daniel Davey)
    [20] Machleidt R 2001 Phys. Rev. C 63 024001
    [21] Oers W T H and Cameron J M 1969 Phys. Rev. 184 1061
    [22] Bochkarev O V et al 1989 Nucl. Phys. A 505215
    [23] Goldansky V 1961 Nucl. Phys. 27 648
    [24] Koonin S 1977 Phys. Lett. B 70 43
  • Related Articles

    [1]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [2]XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
    [3]WEI Guang-Mei, GAO Yi-Tian, XU Tao, MENG Xiang-Hua, ZHANG Chun-Yi. Painleve Property and New Analytic Solutions for a Variable-Coefficient Kadomtsev--Petviashvili Equation with Symbolic Computation [J]. Chin. Phys. Lett., 2008, 25(5): 1599-1602.
    [4]YANG Xu-Dong, RUAN Hang-Yu, LOU Sen-Yue. Nonsingular Travelling Complexiton Solutions to a Coupled Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(3): 805-808.
    [5]YE Ling-Ya, LV Yi-Neng, ZHANG Yi, JIN Hui-Ping. Grammian Solutions to a Variable-Coefficient KP Equation [J]. Chin. Phys. Lett., 2008, 25(2): 357-358.
    [6]ZHANG Da-Jun. Conservation Laws and Lax Pair of the Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 2007, 24(11): 3021-3023.
    [7]ZHANG Chun-Yi, YAO Zhen-Zhi, ZHU Hong-Wu, XU Tao, LI Juan, MENG Xiang-Hua, GAO Yi-Tian. Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics [J]. Chin. Phys. Lett., 2007, 24(5): 1173-1176.
    [8]CAI Hao, HUANG Nian-Ning. Green’s Function Method for Perturbed Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2003, 20(4): 469-472.
    [9]WU Ke-xue, CHEN Shi-rong. An Alternative Form of Inverse Scattering Transform for the Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1998, 15(9): 654-656.
    [10]ZHANG Jiefang. Six Sets of Symmetries of the Variable Coefficient Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1994, 11(1): 4-7.

Catalog

    Article views (0) PDF downloads (665) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return