Friction Properties of Bio-mimetic Nano-fibrillar Arrays
-
Abstract
Nano-fibrillar arrays are fabricated using polystyrene materials. The average diameter of each fiber is about 300nm. Experiments show that such a fibrillar surface possesses a relatively hydrophobic feature with a water contact angle of 142°. Nanoscale friction properties are mainly focused on. It is found that the friction force of polystyrene nano-fibrillar surfaces is obviously enhanced in contrast to polystyrene smooth surfaces. The apparent coefficient of friction increases with the applied load, but is independent of the scanning speed. An interesting observation is that the friction force increases almost linearly with the real contact area, which abides by the fundamental Bowden-Tabor law of nano-scale friction.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 108103. DOI: 10.1088/0256-307X/26/10/108103
CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 108103. DOI: 10.1088/0256-307X/26/10/108103
|
CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 108103. DOI: 10.1088/0256-307X/26/10/108103
CHEN Shao-Hua, MI Chun-Hui. Friction Properties of Bio-mimetic Nano-fibrillar Arrays[J]. Chin. Phys. Lett., 2009, 26(10): 108103. DOI: 10.1088/0256-307X/26/10/108103
|