Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling
-
Abstract
Molecular dynamics (MD) simulation is carried out for the bubble nucleation of liquid nitrogen in explosive boiling. The heat is transferred into the simulation system by rescaling the velocity of the molecules. The results indicate that the initial equilibrium temperature of liquid and molecular cluster size affect the energy conversion in the process of bubble nucleation. The potential energy of the system violently varies at the beginning of the bubble nucleation, and then varies around a fixed value. At the end of bubble nucleation, the potential energy of the system slowly increases. In the bubble nucleation of explosive boiling, the lower the initial equilibrium temperature, the larger the size of the molecular cluster, and the more the heat transferred into the system of the simulation cell, causing the increase potential energy in a larger range.
Article Text
-
-
-
About This Article
Cite this article:
ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 013101. DOI: 10.1088/0256-307X/26/1/013101
ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 013101. DOI: 10.1088/0256-307X/26/1/013101
|
ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 013101. DOI: 10.1088/0256-307X/26/1/013101
ZOU Yu, HUAI Xiu-Lan, LIANG Shi-Qiang. Molecular Dynamics Simulation of Bubble Nucleation in Explosive Boiling[J]. Chin. Phys. Lett., 2009, 26(1): 013101. DOI: 10.1088/0256-307X/26/1/013101
|