Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads
-
Abstract
We theoretically study the spin-polarized transport phenomena of the parallel double quantum dots coupled to two ferromagnetic leads by the Anderson Hamiltonian. The Hamiltonian is solved by means of the equation-of-motion
approach. We analyse the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon both the spin-polarized strength p and the value of the magnetic flux Φ. Moreover, in the parallel configuration, the position of the Kondo peak shifts while it remains unchanged for the antiparallel configuration. These effects might have some potential applications in spintronics.
Article Text
-
-
-
About This Article
Cite this article:
HOU Tao, WU Shao-Quan, BI Ai-Hua, YANG Fu-Bin, SUN Wei-Li. Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2008, 25(6): 2198-2201.
HOU Tao, WU Shao-Quan, BI Ai-Hua, YANG Fu-Bin, SUN Wei-Li. Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2008, 25(6): 2198-2201.
|
HOU Tao, WU Shao-Quan, BI Ai-Hua, YANG Fu-Bin, SUN Wei-Li. Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2008, 25(6): 2198-2201.
HOU Tao, WU Shao-Quan, BI Ai-Hua, YANG Fu-Bin, SUN Wei-Li. Spin-Polarized Transport through Parallel Double Quantum Dots Coupled to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2008, 25(6): 2198-2201.
|