Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys
-
Abstract
With the aid of hydrogenation/dehydrogenation, nanorod whiskers of transition metal Mn can grow spontaneously from Zr1-xTixMnCr Laves phase alloys at room temperature. The finding introduces a distinguishingly different element into metal whisker family, and provides a potential technique for fabrication of one-dimensional metal nanostructures. Moreover, it is found that the segregated Mn in whiskers forms a novel hexagonal structure, which partially fulfills the long predicted allotropic form and adds more complexity to the structures of Mn.
Article Text
-
-
-
About This Article
Cite this article:
WU Er-Dong, GUO Xiu-Mei. Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys[J]. Chin. Phys. Lett., 2008, 25(7): 2607-2609.
WU Er-Dong, GUO Xiu-Mei. Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys[J]. Chin. Phys. Lett., 2008, 25(7): 2607-2609.
|
WU Er-Dong, GUO Xiu-Mei. Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys[J]. Chin. Phys. Lett., 2008, 25(7): 2607-2609.
WU Er-Dong, GUO Xiu-Mei. Mn Nanowhiskers of a Novel Hexagonal Phase Grown from Hydrogen Activated Laves Phase Alloys[J]. Chin. Phys. Lett., 2008, 25(7): 2607-2609.
|