Decomposition for a 2+1-Dimensional Discrete Integrable Model
-
Abstract
A 2+1-dimensional discrete is presented, which is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems, with aid of the nonlinearization of Lax pairs. The system is completely integrable in the Liouville sense.
Article Text
-
-
-
About This Article
Cite this article:
SU Ting, MA Yun-Ling, GENG Xian-Guo. Decomposition for a 2+1-Dimensional Discrete Integrable Model[J]. Chin. Phys. Lett., 2008, 25(10): 3523-3526.
SU Ting, MA Yun-Ling, GENG Xian-Guo. Decomposition for a 2+1-Dimensional Discrete Integrable Model[J]. Chin. Phys. Lett., 2008, 25(10): 3523-3526.
|
SU Ting, MA Yun-Ling, GENG Xian-Guo. Decomposition for a 2+1-Dimensional Discrete Integrable Model[J]. Chin. Phys. Lett., 2008, 25(10): 3523-3526.
SU Ting, MA Yun-Ling, GENG Xian-Guo. Decomposition for a 2+1-Dimensional Discrete Integrable Model[J]. Chin. Phys. Lett., 2008, 25(10): 3523-3526.
|