Laser Induced Damage Threshold at 355 and 1064nm of Ta2O5 Films of Different Phases
-
Abstract
Ta2O5 films are deposited on fused silica substrates by conventional electron beam evaporation method. By annealing at different temperatures, Ta2O5 films of amorphous, hexagonal and orthorhombic phases are obtained and confirmed by x-ray diffractometer (XRD) results. X-ray photoelectron spectroscopy (XPS) analysis shows that chemical composition of all the films is stoichiometry. It is found that the amorphous Ta2O5 film achieves the highest laser induced damage threshold (LIDT) either at 355 or 1064nm, followed by hexagonal phase and finally orthorhombic phase. The damage morphologies at 355 and 1064nm are different as the former shows a uniform fused area while the latter is centred on one or more defect points, which is induced by different damage mechanisms. The decrease of the LIDT at 1064nm is attributed to the increasing structural defect, while at 355nm is due to the combination effect of the increasing structural defect and decreasing band gap energy. -
References
[1] Yuan L et al 2007 J. Opt. Soc. Am. B 24 538 [2] Zhang D P et al 2004 Opt. Lett. 29 2870 [3] Zhao Y A et al 2005 Proc. SPIE 5991 599117-1 [4] Yu H et al 2007 Appl. Surf. Sci. 253 6113 [5] Xu C, Yao J K, Ma J Y, Jin Y X and Shao J D 2007 Chin. Opt. Lett. 5 727 [6] Xu C et al 2008 Opt. Laser Technol. 40 545 [7] Xu C et al 2008 Chin. Phys. Lett. 25 1321 [8] Natoli J Y et al 2005 Opt. Lett. 30 1315 [9] Kouta H 1999 Appl. Opt. 38 545 [10] Wolfe C R et al 1989 Proc. SPIE 509 255 [11] ISO 11254-1:2000 Lasers and Laser-RelatedEquipment-Determination of Laser-Induced Damage Threshold of OpticalSurfaces (Part 1.1-on-1 test) [12] Zhan M Q et al 2006 Opt. Eng. 45 063801 [13] Hu H, Fan Z and Luo F 2001 Appl. Opt. 40 1950 [14] Dimitrova T et al 2001 Thin Solid Films 38131 [15] Gonzalez J et al 1998 J. Mater. Sci. 33 4173 [16] Szymanowski H, Zabeida O, Klemberg-Sapieha J E andMartinu L 2005 J. Vac. Sci. Technol. A 23 241 [17] Atanassova E et al 2002 Microelectron. J. 33907 [18] Tauc J 1974 Amorphous and Liquid Semiconductors(New York: Plenum) [19] Meng L J and Dos Santos M P 1993 Thin Solid Films 226 22 [20] Demiryont H, Sites J R and Geib K 1985 Appl. Opt. 24 490 [21] Lai B C, Kung N and Lee J Y J 1999 Appl. Phys. 85 4087 [22] Albrecht W W 1989 Tantalum and Niobiom (Berlin:Springer) [23] Jones S C, Braunlich P, Casper R T, Shen X A and Kelly P1989 Opt. Eng. 28 1039 [24] Zhao Y A, Gao W D, Shao J D and Fan Z X 2004 Appl.Surf. Sci. 227 275 [25] Yao J K, Shao J D, He H B and Fan Z X 2007 Appl.Surf. Sci. 253 8911 [26] Walker T W, Guenther A H and Nielsen P E 1981 IEEEJ. Quantum Electron. 17 2041 [27] Walker T W, Guenther A H and Nielsen P E 1981 IEEEJ. Quantum Electron. 17 2053 -
Related Articles
[1] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing. A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(2): 028101. doi: 10.1088/0256-307X/28/2/028101 [2] CHEN Peng, SHEN Bo, ZHU Jian-Min, CHEN Zhi-Zhong, ZHOU Yu-Gang, XIE Shi-Yong, ZHANG Rong, HAN Ping, GU Shu-Lin, ZHENG You-Dou, JIANG Shu-Sheng, FENG Duan, Z. C. Huang. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2000, 17(3): 224-226. [3] QI Zhen, HUANG Jing-yun, YE Zhi-zhen, LU Huan-ming, CHEN Wei-hua, ZHAO Bing-hui, WANG Lei. Growth and Characterization of High Quality Sil-x-yGexCy Alloy Grown by Ultra-High Vacuum Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1999, 16(10): 750-752. [4] BAI Yi-zhen, JIANG Zhi-gang, WANG Chun-lei, JIN Zeng-sun, LÜ Xian-yi, ZOU Guang-tian. Effects of Alcohol Addition on the Deposition of Diamond Thick Films by dc Plasma Chemical Vapor Deposition Method [J]. Chin. Phys. Lett., 1998, 15(3): 228-229. [5] YIN Min, LOU Li-ren, FU Zhu-xi. Metalorganic Chemical Vapor Deposition of GaAs on Si Substrate Prepared by Room Temperature Chemical Cleaning Treatment [J]. Chin. Phys. Lett., 1997, 14(9): 690-693. [6] GAO Chun-xiao, ZHANG Tie-chen, ZOU Guang-tian, JIN Zeng-sun, YANG Jie. Epitaxial Growth of High Quality Diamond Film on the Cubic BoronNitride Surface by Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1996, 13(10): 779-781. [7] SHI Hongtao, ZHANG Rong, ZHENG Youdou, HE Yuliang, LIU Xiangna. Cubic Silicon Carbite Film Growth and Characterization by HotFilament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1994, 11(11): 709-712. [8] GAO Kelin, ZHAN Rujuan, WANG Chunlin, CAO Jinxiang, XIANG Zhilin. Characteristics of the Plasma During Chemical Vapor Deposition for Diamond Growth [J]. Chin. Phys. Lett., 1992, 9(3): 144-147. [9] GAO Kelin, WANG Chunlin, ZHAN Rujuan, PENG Dingkun, MENG Giangyao, XIANG Zhilin. Growth of Diamond Films by Microwave Plasma Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1991, 8(7): 348-351. [10] ZHAN Rujuan, GAO Kelin, ZOU Zuping, WANG Yanxia, LIU Jiezhou, XIANG Zhilin, LIU Hongtu, WU Zhiqiang, YE Jian, ZHOU Guien, WANG Changsui. GROWTH OF DIAMOND-LIKE FILMS BY DC PLASMA CHEMICAL VAPOR DEPOSITION [J]. Chin. Phys. Lett., 1990, 7(10): 445-448.