Stability of Rayleigh--Taylor Vortices in Dusty Plasma

  • Published Date: March 31, 2006
  • The evolution of Rayleigh--Taylor mode in dusty plasma with vortex-flow is investigated. Based on fluid theory and Bayly’s method, we derive the coupling equations describing the Rayleigh--Taylor mode in the core of vortex, and research the evolution characteristics of the perturbation amplitude with time numerically. It is shown that the eccentric of vortex and the content of dust have considerable effects on the amplitude evolutions.
  • Article Text

  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]Liujun Xu, Jiping Huang. Negative Thermal Transport in Conduction and Advection [J]. Chin. Phys. Lett., 2020, 37(8): 080502. doi: 10.1088/0256-307X/37/8/080502
    [3]XU Yi-Ting, XU Jia-Lin, CUI Qian-Jin, XIE Shi-Yong, LU Yuan-Fu, BO Yong, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan. High Efficiency Multi-kW Diode-Side-Pumped Nd:YAG Laser with Reduced Thermal Effect [J]. Chin. Phys. Lett., 2010, 27(2): 024201. doi: 10.1088/0256-307X/27/2/024201
    [4]YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition [J]. Chin. Phys. Lett., 2007, 24(7): 1934-1937.
    [5]LI Lan, FU Li-Wei, YANG Rui-Xia, LI Guang-Min, TAO Yi, ZHANG Na, ZHANG Xiao-Song. Thermal Behaviour for InGaAsP/InP Multi-Quantum-Well Superluminescent Diodes [J]. Chin. Phys. Lett., 2005, 22(8): 2130-2132.
    [6]YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator [J]. Chin. Phys. Lett., 2005, 22(3): 607-610.
    [7]LIN Yi-Qing, LU Ju-Fu, GU Wei-Min. Smooth Transition from Shakura-Sunyaev Disc to Advection-Dominated Accretion Flow [J]. Chin. Phys. Lett., 2003, 20(7): 1179-1182.
    [8]WANG Ding-Xiong, LEI Wei-Hua, XIAO Kan. A Toy Model for Advection Dominated Accretion Flows [J]. Chin. Phys. Lett., 2003, 20(6): 965-968.
    [9]GU Wei-Min, LU Ju-Fu. Radial Shocks in Advection-Dominated Accretion FlowsAround Black Holes [J]. Chin. Phys. Lett., 2001, 18(1): 148-150.
    [10]YUAN Feng, HUANG Ke-liang. Locations of Sonic Points in Advection Dominated Accretion Flows Around Black Holes [J]. Chin. Phys. Lett., 1999, 16(4): 310-312.
  • Cited by

    Periodical cited type(11)

    1. Lei, M., Jin, P., Zhou, Y. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(44): e2410041121. DOI:10.1073/pnas.2410041121
    2. Qiu, Y., Yang, F., Huang, J. et al. Giant and robust thermal nonreciprocity in a fluid-solid multiphase circulator. Physics of Fluids, 2024, 36(10): 103632. DOI:10.1063/5.0233551
    3. Ju, R., Cao, P.-C., Wang, D. et al. Nonreciprocal Heat Circulation Metadevices. Advanced Materials, 2024, 36(3): 2309835. DOI:10.1002/adma.202309835
    4. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002
    5. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305
    6. Lou, Q., Xia, M.-G. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial. Chinese Physics Letters, 2023, 40(9): 094401. DOI:10.1088/0256-307X/40/9/094401
    7. Ju, R., Xu, G., Xu, L. et al. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. Advanced Materials, 2023, 35(23): 2209123. DOI:10.1002/adma.202209123
    8. Chen, Z.-H., Wang, F.-Y., Chen, H. et al. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System. Chinese Physics Letters, 2023, 40(5): 050501. DOI:10.1088/0256-307X/40/5/050501
    9. Qi, M., Wang, D., Cao, P.-C. et al. Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34(32): 2202241. DOI:10.1002/adma.202202241
    10. Zhang, J., Zhang, H.-C., Huang, Z.-L. et al. Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film. Chinese Physics B, 2022, 31(1): 014402. DOI:10.1088/1674-1056/ac2809
    11. Cao, P.-C., Li, Y., Peng, Y.-G. et al. Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4(1): 230. DOI:10.1038/s42005-021-00731-z

    Other cited types(0)

Catalog

    Article views (2) PDF downloads (543) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return