Heat Conduction and Characteristic Size of Fractal Porous Media

  • Published Date: May 31, 2006
  • Based on fractal theory, two types of random Sierpinski carpets (RSCs) and their periodic structures are generated to model the structures of natural porous media, and the heat conduction in these structures is simulated by the finite volume method. The calculated results indicate that in a certain range of length scales, the size and spatial arrangement of pores have significant influence on the effective thermal conductivity, and the heat conduction presents the aeolotropic characteristic. Above the length scale, however, the influence of size and spatial arrangement of pores on the effective thermal conductivity reduces gradually with the increasing characteristic size of porous media, the aeolotropic characteristic is weakened gradually. It is concluded that the periodicity in structures of porous media is not equal to the periodicity in heat conduction.

  • Article Text

  • Related Articles

    [1]YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media [J]. Chin. Phys. Lett., 2012, 29(6): 064706. doi: 10.1088/0256-307X/29/6/064706
    [2]LI Ming-Jun, CHEN Liang. Magnetic Fluid Flows in Porous Media* [J]. Chin. Phys. Lett., 2011, 28(8): 085203. doi: 10.1088/0256-307X/28/8/085203
    [3]A. M. Salem. Temperature-Dependent Viscosity Effects on Non-Darcy Hydrodynamic Free Convection Heat Transfer from a Vertical Wedge in Porous Media [J]. Chin. Phys. Lett., 2010, 27(6): 064401. doi: 10.1088/0256-307X/27/6/064401
    [4]CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media [J]. Chin. Phys. Lett., 2010, 27(2): 024705. doi: 10.1088/0256-307X/27/2/024705
    [5]CAI Jun, HUAI Xiu-Lan. A Lattice Boltzmann Model for Fluid-Solid Coupling Heat Transfer in Fractal Porous Media [J]. Chin. Phys. Lett., 2009, 26(6): 064401. doi: 10.1088/0256-307X/26/6/064401
    [6]YU Bo-Ming. Fractal Character for Tortuous Streamtubes in Porous Media [J]. Chin. Phys. Lett., 2005, 22(1): 158-160.
    [7]YU Bo-Ming, LI Jian-Hua. A Fractal Model for the Transverse Thermal Dispersion Conductivity in Porous Media [J]. Chin. Phys. Lett., 2004, 21(1): 117-120.
    [8]TIAN Ju-Ping, YAO Kai-Lun. Viscous Fingering Patterns and Fractal Nature in Two-Dimension Porous Media [J]. Chin. Phys. Lett., 2001, 18(10): 1371-1373.
    [9]TIAN Juping, YU Boming, YAO Kailun. Fractal Nature of Capillary and Viscous Fingering in Two-Dimensional Porous Media [J]. Chin. Phys. Lett., 1995, 12(12): 739-742.
    [10]ZHANG Min, TAO Ruibao. STUDIES ON UNIVERSALITY IN TWO DIMENSIONAL FRACTAL MEDIA [J]. Chin. Phys. Lett., 1988, 5(5): 233-236.

Catalog

    Article views (2) PDF downloads (883) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return