Pellet Enhanced Performance on the HL-2A Tokamak

  • Published Date: August 31, 2006
  • Enhanced confinement has been achieved by the centre fuelling of pellet injection on the HL-2A tokamak. The energy confinement time increases from 50ms to 140ms after the pellet injection. Experimental results show that the improvement of the confinement is related to the decrease of the electron heat transport. everal phenomena which may lead to the improved confinement have been observed in the experiments. After the pellet injection the hollow electron temperature profile and the peaked electron density profile can be sustained for about 200ms, but the improved confinement remains at about 500ms. Sawtooth features and MHD modes have been observed by soft x-ray array and the Mirnov probes. The weak (or reversed) magnetic shear is thought to be an important cause of the low electron heat transport.
  • Article Text

  • Related Articles

    [1]X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models [J]. Chin. Phys. Lett., 2022, 39(6): 067502. doi: 10.1088/0256-307X/39/6/067502
    [2]TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation [J]. Chin. Phys. Lett., 2009, 26(6): 060501. doi: 10.1088/0256-307X/26/6/060501
    [3]LIU Zheng-Feng, WANG Xiao-Hong. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique [J]. Chin. Phys. Lett., 2008, 25(2): 604-607.
    [4]LIN Ming-Xi, QI Sheng-Wen, LIU Yu-Liang. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System [J]. Chin. Phys. Lett., 2006, 23(11): 3076-3079.
    [5]WU Xin-Tian. Two-Dimensional Saddle Point Equation of Ginzburg--Landau Hamiltonian for the Diluted Ising Model [J]. Chin. Phys. Lett., 2006, 23(2): 305-308.
    [6]SONG Bo, WANG Yu-Peng. The Green Function Approach to the Two-Dimensional t-J model [J]. Chin. Phys. Lett., 2003, 20(2): 287-289.
    [7]SUN Gang, CHU Qian-Jin. Phase Diagram of the 2-Dimensional Ising Model with DipolarInteraction [J]. Chin. Phys. Lett., 2001, 18(4): 491-494.
    [8]YAN Xiao-hong, ZHANG Li-de, DUAN Zhu-ping, YANG Qi-bin. Renormalization Group Approach on Nanostructured Systems [J]. Chin. Phys. Lett., 1997, 14(4): 291-294.
    [9]YAN Xiaohong, YOU Jianqiang, YAN Jiaren, ZHONG Jianxin. Renormalization Group on the Aperiodic Hamiltonian [J]. Chin. Phys. Lett., 1992, 9(11): 623-625.
    [10]TAN Weichao, YANG Chuliang. RENORMALIZATION GROUP METHOD FOR CALCULATING THE LOCALIZATION LENGTH OF COUPLED DISORDERED CHAINS [J]. Chin. Phys. Lett., 1989, 6(5): 213-216.

Catalog

    Article views (1) PDF downloads (620) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return