A Fully Vectorial Effective Index Method for Accurate Dispersion Calculation of Photonic Crystal Fibres

  • Published Date: August 31, 2006
  • A fully vectorial effective index method is developed for accurate dispersion calculation of photonic crystal fibres (PCFs). In order to improve the accuracy of the model, different values for the effective
    core radius are used when PCFs have different fibre parameters. The accuracy of our approach is demonstrated by comparing our results with other numerical and experimental results reported in literature. It is found that the accuracy of the fully vectorial effective index method is improved and our results agree well with accurate numerical results obtained by other methods as well as the previously reported experimental data.
  • Article Text

  • Related Articles

    [1]NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators [J]. Chin. Phys. Lett., 2012, 29(6): 060502. doi: 10.1088/0256-307X/29/6/060502
    [2]S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay [J]. Chin. Phys. Lett., 2012, 29(3): 030202. doi: 10.1088/0256-307X/29/3/030202
    [3]LI Ji-Na, ZHANG Shun-Li. Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation [J]. Chin. Phys. Lett., 2011, 28(3): 030201. doi: 10.1088/0256-307X/28/3/030201
    [4]ZHAO Yuan, ZHANG Shun-Li, LOU Sen-Yue. Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping [J]. Chin. Phys. Lett., 2009, 26(10): 100201. doi: 10.1088/0256-307X/26/10/100201
    [5]JIA Man, WANG Jian-Yong, LOU Sen-Yue. Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(2): 020201. doi: 10.1088/0256-307X/26/2/020201
    [6]A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method [J]. Chin. Phys. Lett., 2008, 25(2): 589-592.
    [7]ZHANG Shun-Li, WANG Peng-Zhou, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation [J]. Chin. Phys. Lett., 2006, 23(10): 2625-2628.
    [8]ZHANG Shun-Li, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations [J]. Chin. Phys. Lett., 2006, 23(3): 527-530.
    [9]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [10]LOU Sen-yue. A Direct Perturbation Method: Nonlinear Schrodinger Equation with Loss [J]. Chin. Phys. Lett., 1999, 16(9): 659-661.

Catalog

    Article views (1) PDF downloads (1090) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return