A Separable Pairing Force in Nuclear Matter

  • Published Date: November 30, 2006
  • The method introduced by Duguet is adopted to derive a separable form of the pairing interaction in the ¹S0; channel from a bare or an effective nucleon--nucleon (NN) interaction in nuclear matter. With this approach the separable pairing interaction reproduces the pairing properties provided by its corresponding NN interaction. In this work, separable forms of pairing interactions in the ¹S0; channel for the bare NN interaction, Bonn potential and the Gogny effective interaction are obtained. It is found that the separable force of the Gogny effective interaction in the ¹S0 channel has a clear link with the bare NN interaction. With such a simple separable form pairing properties provided by the Gogny force in nuclear matter can be reproduced.

  • Article Text

  • Related Articles

    [1]NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators [J]. Chin. Phys. Lett., 2012, 29(6): 060502. doi: 10.1088/0256-307X/29/6/060502
    [2]S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay [J]. Chin. Phys. Lett., 2012, 29(3): 030202. doi: 10.1088/0256-307X/29/3/030202
    [3]LI Ji-Na, ZHANG Shun-Li. Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation [J]. Chin. Phys. Lett., 2011, 28(3): 030201. doi: 10.1088/0256-307X/28/3/030201
    [4]ZHAO Yuan, ZHANG Shun-Li, LOU Sen-Yue. Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping [J]. Chin. Phys. Lett., 2009, 26(10): 100201. doi: 10.1088/0256-307X/26/10/100201
    [5]JIA Man, WANG Jian-Yong, LOU Sen-Yue. Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(2): 020201. doi: 10.1088/0256-307X/26/2/020201
    [6]A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method [J]. Chin. Phys. Lett., 2008, 25(2): 589-592.
    [7]ZHANG Shun-Li, WANG Peng-Zhou, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation [J]. Chin. Phys. Lett., 2006, 23(10): 2625-2628.
    [8]ZHANG Shun-Li, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations [J]. Chin. Phys. Lett., 2006, 23(3): 527-530.
    [9]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [10]LOU Sen-yue. A Direct Perturbation Method: Nonlinear Schrodinger Equation with Loss [J]. Chin. Phys. Lett., 1999, 16(9): 659-661.

Catalog

    Article views (1) PDF downloads (879) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return