Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires
-
Abstract
The expression of the ground-state energy of the electron coupled simultaneously with a Coulomb potential and a longitudinal-optical phonon field in parabolic quantum dots and wires is derived within the framework of Feynman variational path integral theory. We obtain a general result with arbitrary electron-phonon coupling constant, Coulomb binding parameters, and confining potential strength, which could be used for further numerical calculation of polaron properties. Moreover, it is shown that all the previous path-integral formulae for free polarons, bound polarons, and polarons confined in parabolic quantum dots and wires can be recovered in the present formalism.
Article Text
-
-
-
About This Article
Cite this article:
CHEN Qing-Hu, WANG Zhuang-Bing, WU Fu-Li, LUO Meng-Bo, YUAN Yong-Hong, JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires[J]. Chin. Phys. Lett., 2001, 18(5): 668-671.
CHEN Qing-Hu, WANG Zhuang-Bing, WU Fu-Li, LUO Meng-Bo, YUAN Yong-Hong, JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires[J]. Chin. Phys. Lett., 2001, 18(5): 668-671.
|
CHEN Qing-Hu, WANG Zhuang-Bing, WU Fu-Li, LUO Meng-Bo, YUAN Yong-Hong, JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires[J]. Chin. Phys. Lett., 2001, 18(5): 668-671.
CHEN Qing-Hu, WANG Zhuang-Bing, WU Fu-Li, LUO Meng-Bo, YUAN Yong-Hong, JIAO Zheng-Kuan. Variational Path-Integral Study on Bound Polarons in Parabolic Quantum Dots and Wires[J]. Chin. Phys. Lett., 2001, 18(5): 668-671.
|