Deformed Relativistic Hartree Theory in Coordinate Space and in Harmonic Oscillator Basis

  • The deformed relativistic Hartree theory (DRH) is solved both in coordinate space (DRH-c) and in harmonic oscillator basis (DRH-o). Results obtained from these two methods are compared in details. The DRH-c and DRH-o calculations give similar total binding energies, deformation, level structures and radii for nitrogen iso-topes, while their descriptions on the density distributions for drip-line nuclei are very different. The large spatial distributions of nucleon densities, which is crucial to understand a weakly bound system, can only be obtained by DRH-c calculations. This implies that the DRH theory should be solved in coordinate space in order to describe nuclei close to the drip line.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return