Decomposition of the Two Lowest Lamb Modes in a Bonded Plate

  • Published Date: June 30, 2003
  • Based on the expression of the dispersion equation of Lamb waves in an adhesive two-layered plate presented in our previous paper [Chin. Phys. Lett. 18(2001)1483], the two lowest Lamb modes, the symmetric mode S0 and the anti-symmetric mode A0 are successfully decomposed in the low-frequency regime. Relations between the rigidity of the bond and the velocity of the two Lamb modes are found, which lay a foundation for the estimation of the bond rigidity of the adhesive plate. The influence of the variations of the bond rigidity in terms of the stiffness constants KN and KT of the spring model on the velocity of the two Lamb modes is discussed and numerically evaluated. Numerical results indicate that the deterioration of the bond rigidity causes the phase velocity decrease for Lamb modes of the two lowest order, thus having a possibility for the evaluation of the bonding state of the adhesive plate by using ultrasonic wave velocity measurement.
  • Article Text

  • Related Articles

    [1]LI Xian-Feng, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model [J]. Chin. Phys. Lett., 2012, 29(1): 010201. doi: 10.1088/0256-307X/29/1/010201
    [2]JI Ying, BI Qin-Sheng. SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation [J]. Chin. Phys. Lett., 2011, 28(9): 090201. doi: 10.1088/0256-307X/28/9/090201
    [3]YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua. Bifurcation of a Saddle-Node Limit Cycle with Homoclinic Orbits Satisfying the Small Lobe Condition in a Leech Neuron Model [J]. Chin. Phys. Lett., 2009, 26(8): 080501. doi: 10.1088/0256-307X/26/8/080501
    [4]MA Jun, WANG Qing-Yun, JIN Wu-Yin, XIA Ya-Feng. Control Chaos in Hindmarsh--Rose Neuron by Using Intermittent Feedback with One Variable [J]. Chin. Phys. Lett., 2008, 25(10): 3582-3585.
    [5]SHI Xia, LU Qi-Shao. Phase Synchronization in Electrically Coupled Different Neuronal Pacemakers with the Chay Model [J]. Chin. Phys. Lett., 2005, 22(3): 547-550.
    [6]WU Cai-yun, QU Shi-xian, WU Shun-guang, HE Da-ren. Scaling Properties of the Period-Adding Sequences in a Multiple Devil’s Staircase [J]. Chin. Phys. Lett., 1998, 15(4): 246-248.
    [7]YANG Shi-ping, TIAN Gang, XU Shu-shan. Controlling Chaos and Bifurcation by a Delayed Nonlinear Feedback [J]. Chin. Phys. Lett., 1996, 13(5): 333-336.
    [8]MIAO Guoqing, NI Wansun, TAO Qintian, ZHANG Zhiliang, WEI Rongjue. BIFURCATION, CHAOS AND HYSTERESIS IN ELECTRODYNAMIC CONE LOUDSPEAKER [J]. Chin. Phys. Lett., 1990, 7(2): 68-71.
    [9]NI Wansun. THE PERIOD-ADDING PHENOMENA IN A TWO-DIMENSIONAL MAPPING WITH THREE PARAMETERS [J]. Chin. Phys. Lett., 1986, 3(12): 573-576.
    [10]WEI Rongjue, TAO Qintian, NI Wansun. BIFURCATION AND CHAOS OF DIRECT RADIATION -LOUDSPEAKER [J]. Chin. Phys. Lett., 1986, 3(10): 469-472.

Catalog

    Article views (0) PDF downloads (555) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return