Phonon Transmission and Thermal Conductance in Fibonacci Wire at Low Temperature

  • Received Date: November 02, 2006
  • Published Date: March 31, 2007
  • We investigate the phonon transmission and thermal conductance in a general Fibonacci quasicrystal by the model of lattice dynamics and the technique of transfer matrix. It is found that quasiperiodic distribution of masses may greatly destroy the phonon transport at both low and high frequencies and thus may affect the thermal conductance. The thermal conductance increases with temperature at low temperatures and displays saturation with further increase of the temperature. Such saturation behaviour is preserved even when the mass ratio of atoms in the Fibonacci chain is changed.
  • Article Text

  • [1] Terrano M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
    [2] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
    [3] Yao Z, Wang J S, Li B and Liu G R 2005 Phys. Rev. B 71 085417
    [4] Rego L G C and Kirczenow G 1998 Phys. Rev. Lett. 81 232
    [5] Schwab K, Henriksen E A, Worlock J M and Roukes M L 2000 Nature 404 974
    [6] Li W X, Chen K Q et al 2004 Appl. Phys. Lett. 85 822
    [7] Xiao Y, Yan X H, Cao J X, Mao Y L, Deng Y X, Ding J W 2004 Chin. Phys. Lett. 21 517
    [8] Zhang Y M and Xiong S J 2005 Phys. Rev. B 72 115305
    [9] Zink B L, Pietri R and Hellman F 2006 Phys. Rev. Lett. 96 055902
    [10] Kengne E and Liu W M 2006 Phys. Rev. B 73 026603
    [11] He L X, Wu Y K and Kuo K H 1988 J. Mater. Sci. Lett. 7 1284
    [12] Chernikov M A, Bianchi A and Ott H R 1995 Phys. Rev.B 51 153
    [13] Peng R W et al 1999 Phys. Rev. B 59 3599
    [14] Zhang Y Y and Xiong S J 2005 Phys. Rev. B 72 132202
    [15] Maci\'{a E 2000 Phys. Rev. B 61 6645
    [16] Beenakker C W J 1997 Rev. Mod. Phys. 69 731
    [17] Madelung O 1980 Introduction to Solid State Theory(New York: Springer) chap 9
  • Related Articles

    [1]XIA Hui-Hao, LIU Xiang-Dong. Range Distribution Parameters and Electronic Stopping Power for 19F+ Ions in SnO2, Indium-Tin Oxide, AgGaSe2 and AgGaS2: Comparison Between Theory and Experiment [J]. Chin. Phys. Lett., 2004, 21(6): 1051-1054.
    [2]TIAN Chun-Ling, LIU Fu-Sheng, CAI Ling-Cang, JING Fu-Qian. Many-Body Contributions to Cohesive Energy of Highly Compressed Solid 4He [J]. Chin. Phys. Lett., 2003, 20(5): 706-708.
    [3]LI Qing-Feng, LI Zhu-Xia. Isospin Effect on Nuclear Stopping in Intermediate Energy Heavy Ion Collisions [J]. Chin. Phys. Lett., 2002, 19(3): 321-323.
    [4]MU Yu-guang, XIA Yue-yuan, MEI Liang-mo. An Improved Calculation of Nonlinear Stopping Power of an Electron Gas for Slow Hydrogen Ions [J]. Chin. Phys. Lett., 1996, 13(11): 825-828.
    [5]LU Xi-ting, JIN Chang-wen, WU Ze-qing, XIA Zong-huang. Energy Loss and Straggling of 4He Ions in Havar [J]. Chin. Phys. Lett., 1996, 13(7): 520-523.
    [6]WU Zeqing, LU Xiting, JIN Changwen, ZHENG Tao, XIA Zonghuang, LIU Hongtao, JIANG Dongxing, YE Yanlin. Stopping Power of Compounds for l6O and l9F Ions [J]. Chin. Phys. Lett., 1994, 11(9): 537-540.
    [7]HUANG Xiaojing, LU Xiting, JIN Changwen, ZHOU Chengfang, YE Yanlin, XIA Zonghuang, LIU Hongtao, JIANG Dongxing. Stopping Power of Au and Ag for He Ions [J]. Chin. Phys. Lett., 1993, 10(4): 205-208.
    [8]LIU Yingzhuang, CAI Xu, LIU Lianshou. On the Stopping Power in High Energy Nucleus-Nucleus Collision and Number of Effective Energy Sources [J]. Chin. Phys. Lett., 1992, 9(3): 127-129.
    [9]MA zhongquan, LIU Jiarui, ZHU Peiran. STOPPING POWER OF PROTON IN MONOCRYSTALLINE, POLYCRYSTALLINE AND AMORPHOUS SILICON [J]. Chin. Phys. Lett., 1990, 7(5): 226-229.
    [10]ZHANG Jianhua, LIU Jiarui, LIYi. CALCULATIONS OF NUCLEAR STOPPING POWERS AND RANGES IN THE LOW-ENERGY REGION [J]. Chin. Phys. Lett., 1989, 6(5): 205-208.

Catalog

    Article views (3) PDF downloads (762) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return