Electron Transport Property of CdTe under High Pressure and Moderate Temperature by In-Situ Resistivity Measurement in Diamond Anvil Cell

  • Received Date: November 14, 2006
  • Published Date: March 31, 2007
  • In situ resistivity measurement has been performed to investigate the electron transport property of powered CdTe under high pressure and moderate temperature in a designed diamond anvil cell. Several abnormal
    resistivity changes can be found at room temperature when the pressure
    increases from ambient to 33GPa. The abnormal resistivity changes at about 3.8GPa and 10GPa are caused by the structural phase transitions to the rock-salt phase and to the Cmcm phase, respectively. The other abnormal resistivity changes at about 6.5GPa, 15.5GPa, 22.2GPa and about 30GPa never observed before are due to the electronic phase transitions of CdTe. The origin of the abnormal change occurred at about 6.5GPa is discussed. The temperature dependence of the resistivity of CdTe shows its semiconducting behaviour at least before 11.3GPa.
  • Article Text

  • [1] Nelmes R J et al 1993 Phys. Rev. B 48 1314
    [2] McMahon M I et al 1993 Phys. Rev. B 48 16246
    [3] Nelmes R J et al 1995 Phys. Rev. B 51 15723
    [4] Edwards A L and Drickamer H G 1961 Phys. Rev. 122 1149
    [5] Dunstan D J and Gil B 1988 Phys. Rev. B 38 7862
    [6] GONZALEZ J et al 1995 J. Phys. Chem. Solids 56 325
    [7] Mei J R and Lemos V 1984 Solid State Commun. 52 785
    [8] G\"uder H S et al 2003 Phys. Status Solidi B 235 509
    [9] Balchan A S and Drickamer H G 1999 Revi. Sci. Instru. 31 511
    [10] Segura A and Sans J A 2005 Joint 20th AIRAPT: 43th EHPRG(from 27 June to 1 July 2005, Karlsruhe, Germany)
    [11] Samara G A and Drickamer H G 1962 J. Phys. Chem. Solids 23 457
    [12] Minomura S, Samara G A and Drickamer H G 1962 J. Appl. Phys.33 3196
    [13] Han Y H et al 2005 Chin. Phys. Lett. 22 927
  • Related Articles

    [1]LI Fang-Yu, CHEN Ying, WANG Ping. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity [J]. Chin. Phys. Lett., 2007, 24(12): 3328-3331.
    [2]TAO Zhi-Yong, XIAO Yu-Meng, WANG Xin-Long. Non-Bragg Resonance of Standing Acoustic Wave in a Cylindrical Waveguide with Sinusoidally Perturbed Walls [J]. Chin. Phys. Lett., 2005, 22(2): 394-397.
    [3]LI Fang-Yu, YANG Nan. Resonant Interaction Between a Weak Gravitational Wave and a Microwave Beam in the Double Polarized States Through a Static Magnetic Field [J]. Chin. Phys. Lett., 2004, 21(11): 2113-2116.
    [4]HE Ming, WANG Jin, TU Xian-Hua, JIANG Kai-Jun, WANG Yi, ZHAN Ming-Sheng. Quantum-Mechanical Simulation of an Atomic Beam Focused by an Optical Standing Wave [J]. Chin. Phys. Lett., 2002, 19(3): 292-294.
    [5]LI Fang-Yu, TANG Meng-Xi. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave [J]. Chin. Phys. Lett., 2001, 18(12): 1546-1549.
    [6]FANG Mao-Fa, ZHOU Peng, S. Swain. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave [J]. Chin. Phys. Lett., 2000, 17(12): 885-887.
    [7]LI Fang-yu, TANG Meng-xi. Electrodynamical Response to a High Frequency Standing Gravitational Wave [J]. Chin. Phys. Lett., 1998, 15(3): 159-161.
    [8]WANG Xiaoguang, SUN Changpu. Deflection of an Atomic Beam in a Large Period Quantized Standing Light Wave [J]. Chin. Phys. Lett., 1994, 11(12): 727-729.
    [9]LI Fangyu, LUO Jun, TANG Mengxi. Perturbed Effect of the Gravitational Wave Produced by MicrowaveElectromagnetic Cavity on Detecting Electromagnetic Field [J]. Chin. Phys. Lett., 1994, 11(6): 321-324.
    [10]WANG Yuzhu, LIU Liang, CAI Weiquan, CHENG Yudan. Atomic Motion in a Misaligned Standing-Wave Field [J]. Chin. Phys. Lett., 1991, 8(7): 333-336.

Catalog

    Article views (0) PDF downloads (571) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return