Neutron-Capture Elements in the Double-Enhanced Star HE 1305-0007: a New s- and r-Process Paradigm
-
Abstract
The star HE 1305-0007 is a metal-poor double-enhanced star with metallicity [Fe/H] =-2.0, which is just at the upper limit of the metallicity for the observed double-enhanced stars. Using a parametric model, we find that almost all s-elements were made in a single neutron exposure. This star should be a member of a post-common-envelope binary. After the s-process material has
experienced only one neutron exposure in the nucleosynthesis region and is dredged-up to its envelope, the AGB evolution is terminated by the onset of common-envelope evolution. Based on the high radial-velocity of HE 1305-0007, we speculate that the star could be a runaway star from a binary system, in which the AIC event has occurred and produced the r-process elements. -
References
[1] Hill V et al 2000 Astron. Astrophys. 353 557 [2] Cohen J G et al 2003 Astrophys. J. 588 1082 [3] Qian Y Z and Wasserburg G J 2003 Astrophys. J. 588 1099 [4] Zijlstra A A 2004 Mon. Not. R. Astron. Soc. 348 L23 [5] Zhang B, Ma K and Zhou G D 2006 Astrophys. J. 642 1075 [6] Barbuy B et al 2005 Astron. Astrophys. 429 1031 [7] Wanajo S et al 2005 Astrophys. J. 636 842 [8] Gallino R et al 1998 Astrophys. J. 497 388 [9] Gallino R et al 2003 Nucl. Phys. A 718 181 [10] Straniero O et al 1995 Astrophys. J. 440 L85 [11] Straniero O, Gallino R and Cristallo S 2006 Nucl. Phys. A 777 311 [12] Cohen J G et al 2005 Astrophys. J. 633 L109 [13] Goswami A et al 2006 Mon. Not. R. Astron. Soc. 372 343 [14] Busso M et al 2001 Astrophys. J. 557 802 [15] Aoki W et al 2001 Astrophys. J. 561 346 [16] Arlandini C et al 1999 Astrophys. J. 525 886 [17] Cui W Y et al 2007 Astrophys. J. 657 1037 [18] Ma K, Cui W Y and Zhang B 2007 Mon. Not. R. Astron.Soc. 375 1418 [19] Iben I Jr 1977 Astrophys. J. 217 788 [20] Groenewegen M A T and de Jong T 1993 Astron.Astrophys. 267 410 [21] Karakas A I, Lattanzio J C and Pols O R 2002 Publ. Astron.Soc. Australia 19 515 [22] Cui W Y and Zhang B 2006 Mon. Not. R. Astron. Soc. 368 305 [23] Herwig F 2000 Astron. Astrophys. 360 952 [24] Herwig F 2004 Astrophys. J. 605 425 [25] Fujimoto M Y, Ikeda Y and Iben I Jr 2000 Astrophys.J. 529 L25 [26] Iwamoto N et al 2003 Nucl. Phys. A 718 193 [27] Travaglio C et al 2004 Astrophys. J. 601 864 -
Related Articles
[1] WANG Ji-Cheng, ZHOU Ke-Ya, WANG Yue-Yuan, LIAO Qing-Hong, LIU Shu-Tian. Withdrawal of Chinese Physics Letters 28 (2011) 043401 [J]. Chin. Phys. Lett., 2011, 28(10): 109901. doi: 10.1088/0256-307X/28/10/109901 [2] XU Shi-Xiang. Withdrawal of Chinese Physics Letters 26 (2009) 114209 [J]. Chin. Phys. Lett., 2011, 28(6): 069901. doi: 10.1088/0256-307X/28/6/069901 [3] JIANG Hui, SHEN Jia-Jie, ZHAO Yu-Min. Benford's Law in Nuclear Structure Physics [J]. Chin. Phys. Lett., 2011, 28(3): 032101. doi: 10.1088/0256-307X/28/3/032101 [4] ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua, XU Tao, GAO Yi-Tian. Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation [J]. Chin. Phys. Lett., 2008, 25(3): 878-880. [5] ZHU Jun-Yi, GENG Xian-Guo. Miura Transformation for the TD Hierarchy [J]. Chin. Phys. Lett., 2006, 23(1): 1-3. [6] WU Pu-Xun, YU Hong-Wei. Relic Gravitational Waves and Trans-Planckian Physics [J]. Chin. Phys. Lett., 2005, 22(9): 2161-2164. [7] LUAN Chang-Fu. Entropy of Baker’s Transformation [J]. Chin. Phys. Lett., 2003, 20(3): 392-394. [8] LIU Hong, HE Xian-Tu, LOU Sen-Yue. Quintic Nonlinearity Induced Solitary Waves in Plasma Physics [J]. Chin. Phys. Lett., 2002, 19(1): 87-90. [9] WU Yue-liang. Probing New Physics from CP Violation in Radiative B Decays [J]. Chin. Phys. Lett., 1999, 16(5): 339-341. [10] LI Yin-yuan(Y.Y.Li). THE ONE-DIMENSIONAL PHYSICS OF α-LiIO3 [J]. Chin. Phys. Lett., 1984, 1(2): 49-52. -
Cited by
Periodical cited type(14)
1. Ma, X., Zhang, H., Zhao, Y. et al. Propagation Properties of Partially Coherent Flat-Topped Beam Rectangular Arrays in Plasma and Atmospheric Turbulence. Photonics, 2025, 12(1): 89. DOI:10.3390/photonics12010089 2. Wang, C., Jin, P., Yang, F. et al. Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities. Applied Materials Today, 2024. DOI:10.1016/j.apmt.2024.102431 3. Liu, Z., Jin, P., Lei, M. et al. Topological thermal transport. Nature Reviews Physics, 2024, 6(9): 554-565. DOI:10.1038/s42254-024-00745-w 4. Dong, X.-M., Guan, B.-J., Li, Y.-J. Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab. Chinese Physics B, 2024, 33(8): 085203. DOI:10.1088/1674-1056/ad4532 5. Liu, J., Xu, L., Huang, J. Spatiotemporal diffusion metamaterials: Theories and applications. Applied Physics Letters, 2024, 124(21): 210502. DOI:10.1063/5.0208656 6. Zhuang, P., Zhou, X., Xu, L. et al. Cooperative near- and far-field thermal management via diffusive superimposed dipoles. Applied Physics Reviews, 2024, 11(1): 011416. DOI:10.1063/5.0190120 7. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002 8. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305 9. Zhang, C.-X., Li, T.-J., Xu, L.-J. et al. Dust-Induced Regulation of Thermal Radiation in Water Droplets. Chinese Physics Letters, 2023, 40(5): 054401. DOI:10.1088/0256-307X/40/5/054401 10. Zhang, Z., Xu, L., Qu, T. et al. Diffusion metamaterials. Nature Reviews Physics, 2023, 5(4): 218-235. DOI:10.1038/s42254-023-00565-4 11. Zhang, Z., Yang, F., Huang, J. Intelligent Chameleonlike Metashells for Mass Diffusion. Physical Review Applied, 2023, 19(2): 024009. DOI:10.1103/PhysRevApplied.19.024009 12. Zhuang, P., Wang, J., Yang, S. et al. Nonlinear thermal responses in geometrically anisotropic metamaterials. Physical Review E, 2022, 106(7): 044203. DOI:10.1103/PhysRevE.106.044203 13. Yang, F., Xu, L., Wang, J. et al. Transformation Theory for Spatiotemporal Metamaterials. Physical Review Applied, 2022, 18(3): 034080. DOI:10.1103/PhysRevApplied.18.034080 14. Wang, B., Huang, J. Hydrodynamic metamaterials for flow manipulation: Functions and prospects. Chinese Physics B, 2022, 31(9): 098101. DOI:10.1088/1674-1056/ac7f8c Other cited types(0)