MHD Boundary Layer Flow of a Non-Newtonian Fluid on a Moving Surface with a Power-Law Velocity

  • Received Date: November 20, 2006
  • Published Date: June 30, 2007
  • A theoretical analysis for MHD boundary layer flow on a moving surface with the power-law velocity is presented. An accurate expression of the skin friction coefficient is derived. The analytical approximate solution is obtained by means of Adomian decomposition methods. The reliability and efficiency of the approximate solutions are verified by numerical ones in the literature.
  • Article Text

  • [1] Sakiadis B C 1961 AIChE J. 7 26
    [2] Erickson L E, Fan L T and Fox V G 1966 Ind. Engin. Chem.Fundam. 5 19
    [3] Crane L J 1970 Zeitschrift f\"ur Angewandte Mathematik undPhysik (ZAMP) 21 645
    [4] Gupta P S and Gupta A S 1977 J. Chem. Engin. 55 744
    [5] Dutta B K, Roy P and Gupta A S 1985 Int. Comm. Heat MassTransfer 28 1234
    [6] Dutta B K 1989 Acta Mech. 78 255
    [7] Tsou F K, Sparrow M and Goldstein R J 1967 Int. J. HeatMass Transfer 10 219
    [8] Sarpkaya T 1961 AIChE J. 7 324
    [9] Sapunkov Ya G 1967 Fluid Dynamics 2 42
    [10] Djukic D S 1973 AIChE J. 19 1159
    [11] Djukic D S 1974 J. Appl. Mech 4 822
    [12] Pavlov K B 1974 Magnitnaya Gidrodinamika (USSR) 4 146
    [13] Wu Y K 1973 J. Appl. Phys. 44 2166
    [14] Andersson H I, Bach K H and Dandapat B S 1992 Int. J.Non-linear Mech. 27 929
    [15] Zheng L C and He J C 1999 Dynam. Syst. Appl. 8 133
    [16] Zheng L C, Zhang X X and He J C 2003 Chin. Phys. Lett. 20 83
    [17] Adomian G 1988 J. Math. Anal. Appl 135 501
    [18] Zheng L C, Chen X H and Zhang X X 2004 Int. J. Appl.Mech. Eng. 9 795
    [19] Zheng L C, Chen X H and Zhang X X 2004 Chin. Phys.Lett. 21 1983
    [20] Chiam T C 1995 Int. J. Engng Sci. 33 429
  • Related Articles

    [1]Chandaneswar Midya. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface [J]. Chin. Phys. Lett., 2012, 29(1): 014701. doi: 10.1088/0256-307X/29/1/014701
    [2]Swati Mukhopadhyay. Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface [J]. Chin. Phys. Lett., 2011, 28(12): 124706. doi: 10.1088/0256-307X/28/12/124706
    [3]Krishnendu Bhattacharyya, G. C. Layek. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing [J]. Chin. Phys. Lett., 2011, 28(8): 084705. doi: 10.1088/0256-307X/28/8/084705
    [4]T. Hayat, M. Mustafa, S. Obaidat. Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid [J]. Chin. Phys. Lett., 2011, 28(7): 074702. doi: 10.1088/0256-307X/28/7/074702
    [5]Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate [J]. Chin. Phys. Lett., 2011, 28(2): 024701. doi: 10.1088/0256-307X/28/2/024701
    [6]YUN Mei-Juan, YU Bo-Ming, Xu Peng, CAI Jian-Chao. Fractal Analysis of Power-Law Fluid in a Single Capillary [J]. Chin. Phys. Lett., 2008, 25(2): 616-619.
    [7]Anuar Ishak, Roslinda Nazar, Ioan Pop. Boundary Layer Flow over a Continuously Moving Thin Needle in a Parallel Free Stream [J]. Chin. Phys. Lett., 2007, 24(10): 2895-2897.
    [8]FENG Shun-Xin, FU Song. Influence of Orbital Motion of Inner Cylinder on Eccentric Taylor Vortex Flow of Newtonian and Power-Law Fluids [J]. Chin. Phys. Lett., 2007, 24(3): 759-762.
    [9]ZHENG Lian-Cun, ZHANG Xin-Xin, LU Chun-Qing. Heat Transfer for Power Law Non-Newtonian Fluids [J]. Chin. Phys. Lett., 2006, 23(12): 3301-3304.
    [10]ZHENG Lian-Cun, ZHANG Xin-Xin, HE Ji-Cheng. Drag Force of Non-newtonian Fluid on a Continuous Moving Surface with Strong Suction/Blowing [J]. Chin. Phys. Lett., 2003, 20(6): 858-861.

Catalog

    Article views (2) PDF downloads (857) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return