Critical Exponents for the Re-entrant Phase Transitions in the Three-Dimensional Blume--Emery--Griffiths Model on the Cellular Automaton

  • Received Date: February 14, 2007
  • Published Date: June 30, 2007
  • The critical behaviour of the three-dimensional Blume--Emery--Griffiths (BEG)
    model is investigated at D/J=0, -0.25 and -1 in the range of -1≤K/J≤0 for J=100. The simulations are carried out on a simple cubic lattice using the heating algorithm improved from the Creutz cellular automaton (CCA) under periodic boundary conditions. The universality of the model are obtained for re-entrant and double re-entrant phase transitions which occur at certain D/J and K/J parameters, with J and K representing the nearest-neighbour bilinear and biquadratic interactions, and D being the single-ion anisotropy parameter. The values of static critical exponents β, γ and υ are estimated within the framework of the finite-size scaling theory. The results are compatible with the universal Ising critical behaviour for all continuous phase transitions in these ranges.
  • Article Text

  • [1] Blume M, Emery V J and Griffiths R B 1971 Phys. Rev. A 4 1071
    [2] Lajzerowicz J and Sivardiere J 1975 Phys. Rev. A 11 2079
    [3] Barker J A and Henderson D 1976 Rev. Mod. Phys. 48 4
    [4] Salvino L W and White J A 1992 J. Chem. Phys. 96 4559
    [5] Zhou S 2006 Phys. Rev. E 74 031119
    [6] Zhou S 2006 J. Chem. Phys. 125 144518
    [7] Sivardiere J and Lajzerowicz J 1975 Phys. Rev. A 11 2090
    [8] Schick M and Shih W H 1986 Phys. Rev. B 34 1797
    [9] Newman K E and Dow J D 1983 Phys. Rev. B 27 7495
    [10] Chen H H and Levy P M 1973 Phys. Rev. B 7 4267
    [11] Hoston W and Berker A N 1991 Phys. Rev. Lett. 67 1027
    [12] Netz R R and Berker A N 1993 Phys. Rev. B 47 15019
    [13] Hoston W and Berker A N 1991 J. Appl. Phys. 70 6101
    [14] Wang Y L and Wentworth C 1987 J. Appl. Phys. 61 4411
    [15] Wang Y L, Lee F and Kimel J D 1987 Phys. Rev. B 36 8945
    [16] Tanaka M and Kawabe T 1985 J. Phys. Soc. Jpn. 54 2194
    [17] Kasono K and Ono I 1992 Z. Phys. B: Cond. Matter 88 205
    [18] Lapinkas S and Rosengren A 1994 Phys. Rev. B 49 15190
    [19] Ekiz C and Keskin M 2002 Phys. Rev. B 66 054105
    [20] Tucker J W, Balcerzak T, Gzik M and Sukiennicks A 1998 J. Magn. Magn. Mater 187 381
    [21] Keskin M and Erdin\c{c A 2004 J. Magn. Magn. Mater. 283 392
    [22] Netz R R 1992 Europhys. Lett. 17 373
    [23] Baran O R and Levitski R R 2002 Phys. Rev. B 65 172407
    [24] Sefero\u{glu N and Kutlu B 2007 Physica A 374 165
    [25] Creutz M 1983 Phys. Rev. Lett. 50 1411
    [26] Kutlu B 2001 Int. J. Mod. Phys. C 12 1401
    [27] Kutlu B, \"{Ozkan A, Sefero\u{glu N, Solak A and Binal B2005 Int. J. Mod. Phys. C 16 1933
    [28] \"{Ozkan A, Sefero\u{glu N and Kutlu B 2006 Physica A 362 327
    [29] Aktekin N 2000 Annual Reviews of Computational PhysicsVII ed Stauffer D (Singapore: World Scientific) p 1
    [30] Kutlu B 2003 Int. J. Mod. Phys. C 14 1305
    [31] Kutlu B 1997 Physica A 234 807
    [32] Sefero\u{glu N, \"{Ozkan A and Kutlu B 2006 Chin.Phys. Lett. 23 2526
    [33] Binder K 1981 Z. Phys. B: Condensed Matter 43 119
    [34] Privman V 1990 Finite Size Scaling and NumericalSimulation of Statistical Systems (Singapore: World Scientific)
  • Related Articles

    [1]Yi Cui, Rong Yu, Weiqiang Yu. Deconfined Quantum Critical Point: A Review of Progress [J]. Chin. Phys. Lett., 2025, 42(4): 047503. doi: 10.1088/0256-307X/42/4/047503
    [2]ZHAO Bo-Han, HU Mao-Bin, JIANG Rui, WU Qing-Song. A Realistic Cellular Automaton Model for Synchronized Traffic Flow [J]. Chin. Phys. Lett., 2009, 26(11): 118902. doi: 10.1088/0256-307X/26/11/118902
    [3]CHEN Tao, JIA Bin, LI Xin-Gang, JIANG Rui, GAO Zi-You. Synchronized Flow in a Cellular Automaton Model with Time Headway Dependent Randomization [J]. Chin. Phys. Lett., 2008, 25(8): 2795-2798.
    [4]H. Demirel, A.Ozkan, B. Kutlu. Finite-Size Scaling Analysis of a Three-Dimensional Blume--Capel Model in the Presence of External Magnetic Field [J]. Chin. Phys. Lett., 2008, 25(7): 2599-2602.
    [5]B. Kutlu, M. Civi. Critical Finite Size Scaling Relation of the Order-Parameter Probability Distribution for the Three-Dimensional Ising Model on the Creutz Cellular Automaton [J]. Chin. Phys. Lett., 2006, 23(10): 2670-2673.
    [6]N. Seferoglu, A. Özkan, B. Kutlu. Finite Size Effect for the First-Order Phase Transition of the Three-Dimensional Blume--Capel Model on a Cellular Automaton [J]. Chin. Phys. Lett., 2006, 23(9): 2526-2529.
    [7]SHAO Yuan-Zhi, J. K. L. Lai, C. H. Shek, LIN Guang-Min, LAN Tu. Nonequilibrium Dynamical Phase Transition of a Three-Dimensional Kinetic Heisenberg Spin System [J]. Chin. Phys. Lett., 2002, 19(9): 1344-1346.
    [8]YANG Fu, WANG Yu-Peng. Critical Behaviour of the One-Dimensional Ferromagnetic t-J Model [J]. Chin. Phys. Lett., 2002, 19(1): 108-110.
    [9]HU Zhan-ning. Remarks on the Three-dimensional Lattice Model [J]. Chin. Phys. Lett., 1996, 13(6): 412-415.
    [10]YING Heping, ZHANG Jianbo, JI Daren. On the Order of the Phase transition in the Three-State Vector Potts Model on a Two-Dimensional Random Lattice [J]. Chin. Phys. Lett., 1992, 9(1): 49-52.

Catalog

    Article views (0) PDF downloads (573) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return