Partial Transposition on Bipartite System

  • Received Date: July 22, 2007
  • Published Date: December 31, 2007
  • Many properties of partial transposition are unclear as yet. Here we carefully consider the number of the negative eigenvalues of ρT (ρ's partial transposition) when ρ is a two-partite state. There is strong evidence to show that the number of negative eigenvalues of ρT is N(N-1)/2 at most when ρ is a state in Hilbert space CN×CN. For the special case, the 2×2 system,
    we use this result to give a partial proof of the conjecture |ρT|T≥0. We find that this conjecture is strongly connected with the entanglement of the state corresponding to the negative eigenvalue of ρ^T or the negative entropy of ρ.
  • Article Text

  • [1] Nielsen M A and Chuang I L 2000 Quantum Computationand Quantum Information (Cambridge: Cambridge University Press)
    [2] Bennett C H et al 1996 Phys. Rev. A 54 3824
    [3] Vedral V and Plenio M B 1998 Phys. Rev. A 571619
    [4] Lewenstein M et al 2001 Phys. Rev. A 63 044304
    [5] D\"{ur W and Cirac J I 2000 Phys. Rev. A 62022302
    [6] Peres A 1996 Phys. Rev. Lett. 77 1413
    [7] Horodecki M et al 1996 Phys. Lett. A 223 1
    [8] Audenaert K et al 2002 Phys. Rev. A 66 032310
    [9] Ishizaka S 2004 Phys. Rev. A 69 020301
    [10] Horn R A and Johnson C R 1985 Matrix Analysis(Cambridge: Cambridge University)
    [11] Verstraete F et al 2001 J. Phys. A 34 10327
    [12] Landau D P and Binder K 2005 A Guide to Monte CarloSimulations in Statistical Physics (Cambridge: Cambridge UniversityPress)
    [13] Vidal G and Werner R F 2002 Phys. Rev. A 65032314

Catalog

    Article views (4) PDF downloads (960) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return