1LTCS and Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 2Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
An improved two-dimensional space-time conservation element and solution element (CE/SE) method with second-order accuracy is proposed, examined and extended to simulate the detonation propagations using detailed chemical reaction models. The numerical results of planar and cellular detonation are compared with corresponding results by the Chapman--Jouguet theory and experiments, and prove that the method is a new reliable way for numerical simulations of detonation propagation.
WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 3563-3566.
WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 3563-3566.
WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 3563-3566.
WANG Gang, ZHANG De-Liang, LIU Kai-Xin. An Improved CE/SE Scheme and Its Application to Detonation Propagation[J]. Chin. Phys. Lett., 2007, 24(12): 3563-3566.