Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect
-
Abstract
Using the scattering-matrix cascading method, we investigate the effect of structural defect on the acoustic phonon transmission and thermal conductance in the superlattice nanowire at low temperatures. In the present system, the phonon transmissions exhibit quite complex oscillatory behaviour. It is found that a lateral defect in an otherwise periodic structure significantly decrease the thermal conductance and completely washes away the transmission quantization. However, the appreciable transmission quantization survives in the presence of a longitudinal defect whereas a good quantization plateau of thermal conductance emerges below the universal level in a wide temperature range with the lateral defect.
Article Text
-
-
-
About This Article
Cite this article:
WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 2107-2110.
WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 2107-2110.
|
WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 2107-2110.
WANG Xin-Jun, LIU Jing-Feng, LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect[J]. Chin. Phys. Lett., 2008, 25(6): 2107-2110.
|