Nanoscale Lasers Based on Carbon Peapods

  • Published Date: December 31, 2005
  • A scheme of nanoscale lasers based on the so-called carbon peapods is examined in detail. Since there is considerable cylindrical empty space in the middle of a single-wall carbon nanotube (SWCNT), it can serve as a laser resonant cavity that consists of two highly reflecting alignment ``mirrors'' separated by a distance. These mirrors refer to the ordered arrays of C60 inside SWCNTs, which have photonic bandgap structures. Meanwhile, ideally single-mode lasers are supposed to be produced in the nanoscale resonant cavity.
  • Article Text

  • Related Articles

    [1]WANG Ji-Cheng, ZHOU Ke-Ya, WANG Yue-Yuan, LIAO Qing-Hong, LIU Shu-Tian. Withdrawal of Chinese Physics Letters 28 (2011) 043401 [J]. Chin. Phys. Lett., 2011, 28(10): 109901. doi: 10.1088/0256-307X/28/10/109901
    [2]XU Shi-Xiang. Withdrawal of Chinese Physics Letters 26 (2009) 114209 [J]. Chin. Phys. Lett., 2011, 28(6): 069901. doi: 10.1088/0256-307X/28/6/069901
    [3]JIANG Hui, SHEN Jia-Jie, ZHAO Yu-Min. Benford's Law in Nuclear Structure Physics [J]. Chin. Phys. Lett., 2011, 28(3): 032101. doi: 10.1088/0256-307X/28/3/032101
    [4]ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua, XU Tao, GAO Yi-Tian. Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation [J]. Chin. Phys. Lett., 2008, 25(3): 878-880.
    [5]ZHU Jun-Yi, GENG Xian-Guo. Miura Transformation for the TD Hierarchy [J]. Chin. Phys. Lett., 2006, 23(1): 1-3.
    [6]WU Pu-Xun, YU Hong-Wei. Relic Gravitational Waves and Trans-Planckian Physics [J]. Chin. Phys. Lett., 2005, 22(9): 2161-2164.
    [7]LUAN Chang-Fu. Entropy of Baker’s Transformation [J]. Chin. Phys. Lett., 2003, 20(3): 392-394.
    [8]LIU Hong, HE Xian-Tu, LOU Sen-Yue. Quintic Nonlinearity Induced Solitary Waves in Plasma Physics [J]. Chin. Phys. Lett., 2002, 19(1): 87-90.
    [9]WU Yue-liang. Probing New Physics from CP Violation in Radiative B Decays [J]. Chin. Phys. Lett., 1999, 16(5): 339-341.
    [10]LI Yin-yuan(Y.Y.Li). THE ONE-DIMENSIONAL PHYSICS OF α-LiIO3 [J]. Chin. Phys. Lett., 1984, 1(2): 49-52.
  • Cited by

    Periodical cited type(14)

    1. Ma, X., Zhang, H., Zhao, Y. et al. Propagation Properties of Partially Coherent Flat-Topped Beam Rectangular Arrays in Plasma and Atmospheric Turbulence. Photonics, 2025, 12(1): 89. DOI:10.3390/photonics12010089
    2. Wang, C., Jin, P., Yang, F. et al. Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities. Applied Materials Today, 2024. DOI:10.1016/j.apmt.2024.102431
    3. Liu, Z., Jin, P., Lei, M. et al. Topological thermal transport. Nature Reviews Physics, 2024, 6(9): 554-565. DOI:10.1038/s42254-024-00745-w
    4. Dong, X.-M., Guan, B.-J., Li, Y.-J. Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab. Chinese Physics B, 2024, 33(8): 085203. DOI:10.1088/1674-1056/ad4532
    5. Liu, J., Xu, L., Huang, J. Spatiotemporal diffusion metamaterials: Theories and applications. Applied Physics Letters, 2024, 124(21): 210502. DOI:10.1063/5.0208656
    6. Zhuang, P., Zhou, X., Xu, L. et al. Cooperative near- and far-field thermal management via diffusive superimposed dipoles. Applied Physics Reviews, 2024, 11(1): 011416. DOI:10.1063/5.0190120
    7. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002
    8. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305
    9. Zhang, C.-X., Li, T.-J., Xu, L.-J. et al. Dust-Induced Regulation of Thermal Radiation in Water Droplets. Chinese Physics Letters, 2023, 40(5): 054401. DOI:10.1088/0256-307X/40/5/054401
    10. Zhang, Z., Xu, L., Qu, T. et al. Diffusion metamaterials. Nature Reviews Physics, 2023, 5(4): 218-235. DOI:10.1038/s42254-023-00565-4
    11. Zhang, Z., Yang, F., Huang, J. Intelligent Chameleonlike Metashells for Mass Diffusion. Physical Review Applied, 2023, 19(2): 024009. DOI:10.1103/PhysRevApplied.19.024009
    12. Zhuang, P., Wang, J., Yang, S. et al. Nonlinear thermal responses in geometrically anisotropic metamaterials. Physical Review E, 2022, 106(7): 044203. DOI:10.1103/PhysRevE.106.044203
    13. Yang, F., Xu, L., Wang, J. et al. Transformation Theory for Spatiotemporal Metamaterials. Physical Review Applied, 2022, 18(3): 034080. DOI:10.1103/PhysRevApplied.18.034080
    14. Wang, B., Huang, J. Hydrodynamic metamaterials for flow manipulation: Functions and prospects. Chinese Physics B, 2022, 31(9): 098101. DOI:10.1088/1674-1056/ac7f8c

    Other cited types(0)

Catalog

    Article views (4) PDF downloads (587) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return