Experimental and Theoretical Analysis of Nondegenerate Ultrabroadband Chirped Pulse Optical Parametric Amplification

  • Published Date: December 31, 2003
  • Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-fs Ti:sapphire laser at 800 nm, was presented. The 0.85 nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 μJ at pump intensity 3 GW/cm2, the corresponding parametric gain reached 3.6 x 103, the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

  • Article Text

  • Related Articles

    [1]FAN Zhi-Qiang, ZHANG Zhen-Hua, QIU Ming, DENG Xiao-Qing, TANG Gui-Ping. Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances [J]. Chin. Phys. Lett., 2012, 29(7): 077305. doi: 10.1088/0256-307X/29/7/077305
    [2]REN Hua, LIANG Wei, ZHAO Peng, LIU De-Sheng. Low Bias Negative Differential Resistance with Large Peak-to-Valley Ratio in a BDC60 Junction [J]. Chin. Phys. Lett., 2012, 29(7): 077301. doi: 10.1088/0256-307X/29/7/077301
    [3]FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot [J]. Chin. Phys. Lett., 2012, 29(3): 037303. doi: 10.1088/0256-307X/29/3/037303
    [4]YIN Hai-Tao, LÜ Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer [J]. Chin. Phys. Lett., 2009, 26(4): 047302. doi: 10.1088/0256-307X/26/4/047302
    [5]YANG Yuan, LI Gui-Ping, GAO Yong, LIU Jing. Characteristics Analysis of Vertical Double Gate Strained Channel Heterostructure Metal-Oxide-Semiconductor-Field-Effect-Transistor [J]. Chin. Phys. Lett., 2009, 26(2): 027801. doi: 10.1088/0256-307X/26/2/027801
    [6]CHENG Jian-Bing, ZHANG Bo, DUAN Bao-Xing, LI Zhao-Ji. A Novel Super-Junction Lateral Double-Diffused Metal--Oxide--Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer [J]. Chin. Phys. Lett., 2008, 25(1): 262-265.
    [7]YANG Fu-Bin, WU Shao-Quan, SUN Wei-Li. Spin-Polarized Transport through the T-Shaped Double Quantum Dots with Fano--Kondo Interaction [J]. Chin. Phys. Lett., 2007, 24(7): 2056-2059.
    [8]HE Jin, BIAN Wei, TAO Ya-Dong, LIU Feng, SONG Yan, ZHANG Xing. Numerical Study on a Lateral Double-Gate Tunnelling Field Effect Transistor [J]. Chin. Phys. Lett., 2006, 23(12): 3373-3375.
    [9]LI Xian-Jie, YAN Fa-Wang, ZHANG Wen-Jun, ZHANG Rong-Gui, LIU Wei-Ji, AO Jin-Ping, ZENG Qing-Ming, LIU Shi-Yong, LIANG Chun-Guang. Field Effect Transistor with Self-Organized In0.15Ga0.85As/GaAs Quantum Wires as a Channel Grown on (553)B GaAs Substrates [J]. Chin. Phys. Lett., 2001, 18(8): 1147-1149.
    [10]LIU Bo, ZHANG Guang-cai, DAI Jian-hua, ZHANG Hong-jun. Eigenvalues and Eigenfunctions of a Stadium-Shaped Quantum Dot Subjected to a Perpendicular Magnetic Field [J]. Chin. Phys. Lett., 1998, 15(9): 628-630.

Catalog

    Article views (5) PDF downloads (739) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return