Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain
-
Abstract
We derive the analytic expression of the concurrence in the quantum Heisenberg XYZ model and discuss the influence of parameters J, Δ, and Γ on the concurrence. By choosing different values Γ and Δ, we obtain the XX, XY, XXX and XXZ chains. The concurrence decreases with increasing temperature. When T → 0, the concurrence reaches its maximum value 1, i.e., the entangled state, | > = √2/2 (|01> - |10>), is maximum entanglement. For the XXZ chain, when Γ → ∞, the concurrence will meet its maximum value Cmax = sinh(1/T)/cosh(1/T).
Article Text
-
-
-
About This Article
Cite this article:
XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue, YUE Rui-Hong. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain[J]. Chin. Phys. Lett., 2002, 19(8): 1044-1047.
XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue, YUE Rui-Hong. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain[J]. Chin. Phys. Lett., 2002, 19(8): 1044-1047.
|
XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue, YUE Rui-Hong. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain[J]. Chin. Phys. Lett., 2002, 19(8): 1044-1047.
XI Xiao-Qiang, HAO San-Ru, CHEN Wen-Xue, YUE Rui-Hong. Entanglement of Two-Qubit Quantum Heisenberg XYZ Chain[J]. Chin. Phys. Lett., 2002, 19(8): 1044-1047.
|