A Hermitian Opetator Conjugate to Two-Mode Number-Difference Operator
-
Abstract
For the Shapiro-Wagner-Hradil phase detection description the canonical commutation relation between phase angle ψ and two-mode number-difference operator D = a†a - b†b is constructed. Departing from ψ, D = -i, the phase angle Hermitian operator is derived in the newly obtained representation < ξ |, where | ξ > is the common eigenket of a + b† and b + a†.
Article Text
-
-
-
About This Article
Cite this article:
FAN Hong-yi, WANG Yi-hua. A Hermitian Opetator Conjugate to Two-Mode Number-Difference Operator[J]. Chin. Phys. Lett., 1998, 15(6): 391-392.
FAN Hong-yi, WANG Yi-hua. A Hermitian Opetator Conjugate to Two-Mode Number-Difference Operator[J]. Chin. Phys. Lett., 1998, 15(6): 391-392.
|
FAN Hong-yi, WANG Yi-hua. A Hermitian Opetator Conjugate to Two-Mode Number-Difference Operator[J]. Chin. Phys. Lett., 1998, 15(6): 391-392.
FAN Hong-yi, WANG Yi-hua. A Hermitian Opetator Conjugate to Two-Mode Number-Difference Operator[J]. Chin. Phys. Lett., 1998, 15(6): 391-392.
|