Probing the Néel Order in Altermagnetic RuO2 Films via X-Ray Magnetic Linear Dichroism

  • Corresponding author:

    Cheng Song, Email: songcheng@mail.tsinghua.edu.cn

  • Received Date: December 13, 2024
  • Accepted Date: January 06, 2025
  • Published Date: January 31, 2025
  • The emerging altermagnetic RuO$_{2}$ with both compensated magnetic moments and broken time-reversal symmetry possesses nontrivial magneto-electronic responses and nonrelativistic spin currents that are closely related to the magnetic easy axis. Ru $M_{3}$-edge X-ray magnetic linear dichroism (XMLD) measurements were performed to probe the Néel order in RuO$_{2}$. For epitaxial RuO$_{2}$ films, characteristic XMLD signals were observed for either RuO$_{2}$(100) or RuO$_{2}$(110) at normal incidence or RuO$_{2}$(001) at oblique incidence. The signals disappeared when the test temperature exceeded the Néel temperature. For non-epitaxial RuO$_{2}$ films, the flat lines in the XMLD patterns of RuO$_{2}$(100) and RuO$_{2}$(110) demonstrate that there is no in-plane uniaxial alignment of the Néel order in these samples because of the counterbalanced Néel order of the twin crystals, as evidenced by X-ray diffraction phi-scan measurements. Our experimental results unambiguously demonstrate antiferromagnetism in RuO$_{2}$ films and reveal the spatial relation of the Néel order parallel to the RuO$_{2}$ [001] crystalline axis. These findings deepen the understanding of RuO$_{2}$ and other attractive altermagnetic materials used in the field of spintronics.
  • Article Text

  • [1]
    Autieri C 2024 Nature 626 482

    Google Scholar

    [2]
    Krempaský J, Šmejkal L, D’Souza S W, Hajlaoui M, Springholz G, Uhlířová K, Alarab F, Constantinou P C, Strocov V, Usanov D, Pudelko W R, González-Hernández R, Birk Hellenes A, Jansa Z, Reichlová H, Šobáň Z, Gonzalez Betancourt R D, Wadley P, Sinova J, Kriegner D, Minár J, Dil J H, and Jungwirth T 2024 Nature 626 517

    Google Scholar

    [3]
    Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 031042

    Google Scholar

    [4]
    Šmejkal L, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 040501

    Google Scholar

    [5]
    Šmejkal L, Hellenes A B, González-Hernández R, Sinova J, and Jungwirth T 2022 Phys. Rev. X 12 011028

    Google Scholar

    [6]
    Yuan L D, Wang Z, Luo J W, Rashba E I, and Zunger A 2020 Phys. Rev. B 102 014422

    Google Scholar

    [7]
    Hayami S, Yanagi Y, and Kusunose H 2020 Phys. Rev. B 102 144441

    Google Scholar

    [8]
    Ma H Y, Hu M L, Li N N, Liu J P, Yao W, Jia J F, and Liu J W 2021 Nat. Commun. 12 2846

    Google Scholar

    [9]
    Liu P F, Li J Y, Han J Z, Wan X G, and Liu Q H 2022 Phys. Rev. X 12 021016

    Google Scholar

    [10]
    Ahn K H, Hariki A, Lee K W, and Kuneš J 2019 Phys. Rev. B 99 184432

    Google Scholar

    [11]
    Berlijn T, Snijders P C, Delaire O, Zhou H D, Maier T A, Cao H B, Chi S X, Matsuda M, Wang Y, Koehler M R, Kent P R C, and Weitering H H 2017 Phys. Rev. Lett. 118 077201

    Google Scholar

    [12]
    Zhu Z H, Strempfer J, Rao R R, Occhialini C A, Pelliciari J, Choi Y, Kawaguchi T, You H, Mitchell J F, Shao-Horn Y, and Comin R 2019 Phys. Rev. Lett. 122 017202

    Google Scholar

    [13]
    Bai H, Zhang Y C, Han L, Zhou Y J, Pan F, and Song C 2022 Appl. Phys. Rev. 9 041316

    Google Scholar

    [14]
    Šmejkal L, González-Hernández R, Jungwirth T, and Sinova J 2020 Sci. Adv. 6 eaaz8809

    Google Scholar

    [15]
    González-Hernández R, Šmejkal L, Výborný K, Yahagi Y, Sinova J, Jungwirth T, and Železný J 2021 Phys. Rev. Lett. 126 127701

    Google Scholar

    [16]
    Šmejkal L, MacDonald A H, Sinova J, Nakatsuji S, and Jungwirth T 2022 Nat. Rev. Mater. 7 482

    Google Scholar

    [17]
    Machida Y, Nakatsuji S, Onoda S, Tayama T, and Sakakibara T 2010 Nature 463 210

    Google Scholar

    [18]
    Feng Z X, Zhou X R, Šmejkal L, Wu L, Zhu Z W, Guo H X, González-Hernández R, Wang X N, Yan H, Qin P X, Zhang X, Wu H J, Chen H Y, Meng Z, Liu L, Xia Z C, Sinova J, Jungwirth T, and Liu Z Q 2022 Nat. Electron. 5 735

    Google Scholar

    [19]
    Tschirner T, Keßler P, Betancourt R D G, Kotte T, Kriegner D, Büchner B, Dufouleur J, Kamp M, Jovic V, Smejkal L, Sinova J, Claessen R, Jungwirth T, Moser S, Reichlova H, and Veyrat L 2023 APL Mater. 11 101103

    Google Scholar

    [20]
    Cheong S W and Huang F T 2024 npj Quantum Mater. 9 13

    Google Scholar

    [21]
    Wang M, Tanaka K, Sakai S, Wang Z Q, Deng K, Lyu Y, Li C, Tian D, Shen S C, Ogawa N, Kanazawa N, Yu P, Arita R, and Kagawa F 2023 Nat. Commun. 14 8240

    Google Scholar

    [22]
    Bose A, Schreiber N J, Jain R, Shao D F, Nair H P, Sun J X, Zhang X S, Muller D A, Tsymbal E Y, Schlom D G, and Ralph D C 2022 Nat. Electron. 5 267

    Google Scholar

    [23]
    Bai H, Han L, Feng X Y, Zhou Y J, Su R X, Wang Q, Liao L Y, Zhu W X, Chen X Z, Pan F, Fan X L, and Song C 2022 Phys. Rev. Lett. 128 197202

    Google Scholar

    [24]
    Karube S, Tanaka T, Sugawara D, Kadoguchi N, Kohda M, and Nitta J 2022 Phys. Rev. Lett. 129 137201

    Google Scholar

    [25]
    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1

    Google Scholar

    [26]
    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, and Buhrman R A 2012 Science 336 555

    Google Scholar

    [27]
    Bai H, Zhang Y C, Zhou Y J, Chen P, Wan C H, Han L, Zhu W X, Liang S X, Su Y C, Han X F, Pan F, and Song C 2023 Phys. Rev. Lett. 130 216701

    Google Scholar

    [28]
    Zhang Y C, Bai H, Han L, Chen C, Zhou Y J, Back C H, Pan F, Wang Y Y, and Song C 2024 Adv. Funct. Mater. 34 2313332

    Google Scholar

    [29]
    Fedchenko O, Minár J, Akashdeep A, D’Souza S W, Vasilyev D, Tkach O, Odenbreit L, Nguyen Q, Kutnyakhov D, Wind N, Wenthaus L, Scholz M, Rossnagel K, Hoesch M, Aeschlimann M, Stadtmüller B, Kläui M, Schönhense G, Jungwirth T, Hellenes A B, Jakob G, Šmejkal L, Sinova J, and Elmers H J 2024 Sci. Adv. 10 eadj4883

    Google Scholar

    [30]
    Lin Z H, Chen D, Lu W L, Liang X, Feng S Y, Yamagami K, Osiecki J, Leandersson M, Thiagarajan B, Liu J W, Felser C, and Ma J Z 2024 arXiv:2402.04995

    Google Scholar

    [31]
    Hiraishi M, Okabe H, Koda A, Kadono R, Muroi T, Hirai D, and Hiroi Z 2024 Phys. Rev. Lett. 132 166702

    Google Scholar

    [32]
    Smolyanyuk A, Mazin I I, Garcia-Gassull L, and Valentí R 2024 Phys. Rev. B 109 134424

    Google Scholar

    [33]
    Stöhr J, Padmore H A, Anders S, Stammler T, and Scheinfein M R 1998 Surf. Rev. Lett. 5 1297

    Google Scholar

    [34]
    Wu J, Park J S, Kim W, Arenholz E, Liberati M, Scholl A, Wu Y Z, Hwang C, and Qiu Z Q 2010 Phys. Rev. Lett. 104 217204

    Google Scholar

    [35]
    Wu Y Z, Sinkovic B, Won C, Zhu J, Zhao Y, and Qiu Z Q 2012 Phys. Rev. B 85 134436

    Google Scholar

    [36]
    Grigorev V, Filianina M, Bodnar S Y, Sobolev S, Bhattacharjee N, Bommanaboyena S, Lytvynenko Y, Skourski Y, Fuchs D, Kläui M, Jourdan M, and Demsar J 2021 Phys. Rev. Appl. 16 014037

    Google Scholar

    [37]
    Huang Y H, Yang C Y, Cheng C W, Lee A, Tseng C H, Wu H, Pan Q J, Che X Y, Lai C H, Wang K L, Lin H J, and Tseng Y C 2022 Adv. Funct. Mater. 32 2111653

    Google Scholar

    [38]
    Meng J W, Chen K, Mijit E, Chen D F, Choueikani F, Zou Z Q, Wang L L, Mu G, Geng W P, Kong Q Y, Jiang A Q, Ning X J, and Weng T C 2019 Phys. Rev. Appl. 12 044010

    Google Scholar

    [39]
    Kuch W, Offi F, Chelaru L I, Wang J, Fukumoto K, Kotsugi M, Kirschner J, and Kuneš J 2007 Phys. Rev. B 75 224406

    Google Scholar

    [40]
    Schlueter C, Yang N, Mazzoli C, Cantoni C, Tebano A, Di Castro D, Balestrino G, Orgiani P, Galdi A, Herrero- Martín J, Gargiani P, Valvidares M, and Aruta C 2020 Adv. Quantum Technol. 3 2000016

    Google Scholar

    [41]
    Wu H, Zhang H T, Wang B M, Groß F, Yang C Y, Li G F, Guo C Y, He H R, Wong K, Wu D, Han X F, Lai C H, Gräfe J, Cheng R, and Wang K L 2022 Nat. Commun. 13 1629

    Google Scholar

    [42]
    Yang M, Li Q, Wang T, Hong B, Klewe C, Li Z, Huang X, Shafer P, Zhang F, Hwang C, Yan W S, Ramesh R, Zhao W S, Wu Y Z, Zhang X X, and Qiu Z Q 2022 Phys. Rev. B 106 214405

    Google Scholar

    [43]
    Song J H, Chen Y S, Chen X B, Khan T, Han F R, Zhang J N, Huang H L, Zhang H, Shi W X, Qi S J, Hu F X, Shen B G, and Sun J R 2020 Phys. Rev. Appl. 14 024062

    Google Scholar

    [44]
    Song J H, Chen Y S, Chen X B, Wang H X, Khan T, Han F R, Zhang J N, Huang H L, Zhang J, Zhang H R, Zhang H, Yan X, Qi S J, Hu F X, Shen B G, Yu R C, and Sun J R 2019 Phys. Rev. Appl. 12 054016

    Google Scholar

    [45]
    Telling N D, Keatley P S, van der Laan G, Hicken R J, Arenholz E, Sakuraba Y, Oogane M, Ando Y, Takanashi K, Sakuma A, and Miyazaki T 2008 Phys. Rev. B 78 184438

    Google Scholar

    [46]
    Nolting F, Legut D, Rusz J, Oppeneer P M, Woltersdorf G and Back C H 2010 Phys. Rev. B 82 184415

    Google Scholar

    [47]
    Lee H G, Wang L F, Si L, He X Y, Porter D G, Kim J R, Ko E K, Kim J, Park S M, Kim B, Wee A T S, Bombardi A, Zhong Z C, and Noh T W 2020 Adv. Mater. 32 1905815

    Google Scholar

    [48]
    Khalid M, Setzer A, Ziese M, Esquinazi P, Spemann D, Poppl A and Goering E 2010 Phys. Rev. B 81 214414

    Google Scholar

    [49]
    Pereira L M C, Arajo J P, Bael M J V, Temst K and Vantomme A 2011 J. Phys. D: Appl. Phys. 44 215001

    Google Scholar

    [50]
    Kluczyk P, Gas K, Grzybowski M J, Skupiński P, Borysiewicz M A, Fąs T, Suffczyński J, Domagala J Z, Grasza K, Mycielski A, Baj M, Ahn K H, Výborný K, Sawicki M and Gryglas-Borysiewicz M 2024 Phys. Rev. B 110 155201

    Google Scholar

  • Related Articles

    [1]WANG De-Lai, CUI Ming-Qi, YANG Dong-Liang, XI Shi-Bo, LIU Li-Juan. X-Ray Magnetic Linear Dichroism of Co35Fe65 Alloy Films Annealed with and without Oxygen Gas [J]. Chin. Phys. Lett., 2013, 30(10): 107501. doi: 10.1088/0256-307X/30/10/107501
    [2]LIU Xiao-Xu, YIN Jing-Hua, SUN Dao-Bin, BU Wen-Bin, CHENG Wei-Dong, WU Zhong-Hua. Small-Angle X-Ray Scattering Study on Nanostructures of Polyimide Films [J]. Chin. Phys. Lett., 2010, 27(9): 096103. doi: 10.1088/0256-307X/27/9/096103
    [3]LIU Zhao-Sen, Divis Martin, Sechovský Vladimir. Magnetic Orderings and Néel Temperature of TbNi2B2C [J]. Chin. Phys. Lett., 2009, 26(10): 107504. doi: 10.1088/0256-307X/26/10/107504
    [4]MA Jie, XIE Chang-Qing, LIU Ming, CHEN Bao-Qin, YE Tian-Chun. Design, Fabrication and Test of a Soft X-Ray Even-Order Transmission Grating [J]. Chin. Phys. Lett., 2009, 26(9): 090702. doi: 10.1088/0256-307X/26/9/090702
    [5]WANG Liang-Ji, ZHANG Shu-Ming, WANG Yu-Tian, JIANG De-Sheng, ZHU Jian-Jun, ZHAO De-Gang, LIU Zong-Shun, WANG Hui, SHI Yong-Sheng, WANG Hai, LIU Su-Ying, YANG Hui. Curvature Correction of FWHM in the X-Ray Rocking Curve of Bent Heteroepitaxial Films [J]. Chin. Phys. Lett., 2009, 26(7): 076104. doi: 10.1088/0256-307X/26/7/076104
    [6]LI Zong-Mu, XU Fa-Qiang, WANG Li-Wu, WANG Jie, ZHU Jun-Fa, ZHANG Wen-Hua. X-Ray Magnetic Circular Dichroism Measurement of Fe--Co Alloy Films Prepared by Electrodeposition [J]. Chin. Phys. Lett., 2007, 24(9): 2667-2670.
    [7]YIN Shi-Long, BIAN Qing, WE Shi-Qiang. Microstructures of Fe77-xNixCu1Nb2P14B6 Soft Magnetic Alloys Studied by X-Ray Absorption Fine Structure [J]. Chin. Phys. Lett., 2000, 17(9): 683-685.
    [8]WANG De-liang, U. Geyer. Growth of Ni Films Observed by Scanning Tunneling Microscopy and X-ray [J]. Chin. Phys. Lett., 1999, 16(5): 370-372.
    [9]MA Hong-ji, JIANG Xiao-ming, CUI Ming-qi, XIAN Ding-chang. X-Ray Nonspecular Scattering from Amorphous Mo Films [J]. Chin. Phys. Lett., 1997, 14(3): 190-193.
    [10]JIANG Xiaoming, HUANG Yonglan, WU Ziqin, LI Bingzong. X-RAY MEASUREMENT OF THE GRAIN SIZES OF WSi2 FORMED IN COSPUTTERED W-Si FILMS [J]. Chin. Phys. Lett., 1986, 3(12): 569-572.
  • Other Related Supplements

Catalog

    Article views (321) PDF downloads (202) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return