Loading [MathJax]/jax/output/SVG/jax.js

A Compact in situ Polarized 3He System for Neutron Scattering

    Show all affliationsShow less
  • Corresponding author:

    Junpei Zhang, Email: zhangjunpei@ihep.ac.cn

    Xin Tong, Email: tongxin@ihep.ac.cn

  • Received Date: October 14, 2024
  • Accepted Date: January 12, 2025
  • Published Date: January 31, 2025
  • This study investigates the performance of a new compact (55cm×56cm×48cm) in situ spin-exchange optical pumping 3He neutron spin filter (NSF) system developed at the China Spallation Neutron Source. The enclosed NSF cell, filled with 3He at 2.53 bar, achieved an initial 3He polarization of approximately 60%. After subsequent improvements in the magnetic field and heating system, this in situ system achieved a 3He polarization of 75.66, resulting in 96.30% neutron polarization at 2 Å. This highly compact in situ system is equipped with self-supportive features, pre-pumping capabilities, polarization maintenance, and a low-noise nuclear magnetic resonance system. These advantages significantly reduce the preparation time and simplify polarized neutron experiments, making it suitable for various neutron beamlines in China, particularly those with a limited sample space. These characteristics establish it as a quasi-standardized system that plays a vital role in polarized neutron experiments, including those involving polarized neutron imaging, neutron reflection, the performance calibration of polarized neutron instruments, and the neutron optics parity and time reversal experiment.
  • Article Text

  • [1]
    Hang X D, Matsuda M, Held J T, Mkhoyan K A, and Wang J P 2020 Phys. Rev. B 102 104402

    Google Scholar

    [2]
    Krycka K, Borchers J, Ijiri Y, Booth R, and Majetich S 2012 J. Appl. Crystallogr. 45 554

    Google Scholar

    [3]
    Niketic N, van den Brandt B, Wenckebach W Th, Kohlbrecher J, and Hautle P 2015 J. Appl. Crystallogr. 48 1514

    Google Scholar

    [4]
    Petsch A N, Zhu M, Enderle M, Mao Z Q, Maeno Y, Mazin I I, and Hayden S M 2020 Phys. Rev. Lett. 125 217004

    Google Scholar

    [5]
    Ju J, Saito H, Kurumaji T, Hirschberger M, Kikkawa A, Taguchi Y, Arima T H, Tokura Y, and Nakajima T 2023 Phys. Rev. B 107 024405

    Google Scholar

    [6]
    Musgrave M M, Baeßler S, Balascuta S, Barrón-Palos L, Blyth D, Bowman J D, Chupp T E, Cianciolo V, Crawford C, Craycraft K, Fomin N, Fry J, Gericke M, Gillis R C, Grammer K, Greene G L, Hamblen J, Hayes C, Huffman P, Jiang C, Kucuker S, McCrea M, Mueller P E, Penttilä S I, Snow W M, Tang E, Tang Z, Tong X, and Wilburn W S 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 895 19

    Google Scholar

    [7]
    Coulter K P, Chupp T E, McDonald A B, Bowman C D, Bowman J D, Szymanski J J, Yuan V, Cates G D, Benton D R, and Earle E D 1990 Nucl. Instrum. Methods Phys. Res. Sect. A 288 463

    Google Scholar

    [8]
    Tong X, Jiang C Y, Lauter V, Ambaye H, Brown D, Crow L, Gentile T R, Goyette R, Lee W T, Parizzi A, and Robertson J L 2012 Rev. Sci. Instrum. 83 075101

    Google Scholar

    [9]
    Andersen K H, Jullien D, Petoukhov A K, Mouveau P, Bordenave F, Thomas F, and Babcock E 2009 Physica B 404 2652

    Google Scholar

    [10]
    Wang Y T, Wu L Y, Zhang K Y, Peng M, Chen S Y, and Yan H Y 2024 Sci. Chin. Phys. Mech. Astron. 67 273011

    Google Scholar

    [11]
    Yan S, Zhang M F, Guo W C, Wang W Z, Gong J, Liang T J, Liu B Q, Peng M, Peng S M, Sun G A, Tu X Q, Yan H Y, Zhang J H, and Zheng H 2019 Sci. Chin. Phys. Mech. Astron. 62 102021

    Google Scholar

    [12]
    Jiang C Y, McDonald L, Cao H B, Balafas M, Crow L, and Kroll E 2023 J. Phys.: Conf. Ser. 2481 012010

    Google Scholar

    [13]
    Kira H, Sakaguchi Y, Oku T, Suzuki J, Nakamura M, Arai M, Endoh Y, Chang L J, Kakurai K, Arimoto Y, Ino T, Shimizu H M, Kamiyama T, Ohoyama K, Hiraka H, Tsutsumi K, and Yamada K 2011 J. Phys.: Conf. Ser. 294 012014

    Google Scholar

    [14]
    Huang C Y, Zhang J P, Ye F, Qin Z C, Amir S M, Buck Z N, Salman A, Kreuzpaintner W, Qi X, Wang T H, and Tong X 2021 Chin. Phys. Lett. 38 092801

    Google Scholar

    [15]
    Zhang J P, Huang C Y, Qin Z C, Ye F, Amir S M, Salman A, Dong Y C, Tian L, Buck Z N, Kreuzpaintner W, Musgrave M, Qi X, Wang T H, and Tong X 2022 Sci. Chin. Phys. Mech. Astron. 65 241011

    Google Scholar

    [16]
    Gentile T R, Nacher P J, Saam B, and Walker T G 2017 Rev. Mod. Phys. 89 045004

    Google Scholar

    [17]
    COMSOL Multiphysics 2023 v6.0. COMSOL AB Stockholm, Sweden

    Google Scholar

    [18]
    Cates G D, Schaefer S R, and Happer W 1988 Phys. Rev. A 37 2877

    Google Scholar

    [19]
    McIver J W, Erwin R, Chen W C, and Gentile T R 2009 Rev. Sci. Instrum. 80 063905

    Google Scholar

    [20]
    Guo S H 2008 Electrodynamics 3rd ed. Beijing: Higher Education Press p. 80 in Chinese

    Google Scholar

    [21]
    Chann B, Babcock E, Anderson L W and Walker T G 2002 Phys. Rev. A 66 032703

    Google Scholar

    [22]
    Wang B, Zhang J P, Lu Y P, Huang C Y, Wang T H, Qin Z C, Dong Y C, Zheng Y J, Li J, Zhang W Q, Ye F, Qi X, Liu Y T and Tong X 2023 J. Appl. Phys. 133 173105

    Google Scholar

    [23]
    Ansys Inc. 2011 Ansys Fluent Theory Guide USA

    Google Scholar

    [24]
    Qin Z C, Huang C Y, Buck Z N, Kreuzpaintner W, Amir S M, Salman A, Ye F, Zhang J P, Jiang C Y, Wang T H, and Tong X 2021 Chin. Phys. Lett. 38 052801

    Google Scholar

    [25]
    McKetterick T J, Boag S, Stewart J R, Frost C D, Skoda M W A, Parnell S R, and Babcock E 2010 Physica B 406 2436

    Google Scholar

    [26]
    Ino T 2018 Proceedings of the International Conference on Neutron Optics p. 011016

    Google Scholar

    [27]
    Boag S, Babcock E, Andersen K H, Becker M, Charlton T R, Chen W C, Dalgliesh R M, Elmore S D, Frost C D, Gentile T R, Lopez Anton R, Parnell S R, Petoukhov A K, Skoda M W A, and Soldner T 2009 Physica B 404 2659

    Google Scholar

    [28]
    Salhi Z, Babcock E, Bingöl K, Bussmann K, Kammerling H, Ossovyi V, Heynen A, Deng H, Hutanu V, Masalovich S, Voigt J, and Ioffe A 2019 J. Phys.: Conf. Ser. 1316 012009

    Google Scholar

    [29]
    Jiang C Y, Tong X, Brown D R, Chi S, Christianson A D, Kadron B J, Robertson J L, and Winn B L 2014 Rev. Sci. Instrum. 85 075112

    Google Scholar

    [30]
    Jiang C Y 2023 AAPPS Bulletin 33 21

    Google Scholar

    [31]
    Zhu T, Zhan X Z, Xiao S W, Sun Y, Wu Y Y, Zhou A Y, and Han Q F 2018 Neutron News 29 11

    Google Scholar

    [32]
    Zhang M F, Yang Z, Zhang J P, Huang C Y, Wang T H, Chen Y H, Fan R R, Snow W M, and Tong X 2024 Nucl. Instrum. Methods Phys. Res. Sect. A 1072 170184

    Google Scholar

  • Related Articles

    [1]Jie Liu, Li-Qun Zhang, Zhen-Nan Jiang, Kamal Ahmad, Jian-She Liu, Wei Chen. Superconducting Nanowire Single Photon Detector with Optical Cavity [J]. Chin. Phys. Lett., 2016, 33(8): 088502. doi: 10.1088/0256-307X/33/8/088502
    [2]TIAN Wei, CHEN Bin, XU Wei-Dong. Controlling Single-Photon Transport along an Optical Waveguide by using a Three-Level Atom [J]. Chin. Phys. Lett., 2012, 29(3): 030302. doi: 10.1088/0256-307X/29/3/030302
    [3]LIU Tao, HUANG Zheng. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode [J]. Chin. Phys. Lett., 2011, 28(10): 107301. doi: 10.1088/0256-307X/28/10/107301
    [4]SHEN Xiao-Fang, YANG Xiao-Yan, YOU Li-Xing. Performance of Superconducting Nanowire Single-Photon Detection System [J]. Chin. Phys. Lett., 2010, 27(8): 087404. doi: 10.1088/0256-307X/27/8/087404
    [5]YANG Hao, ZHAO Bao-Sheng, SHENG Li-Zhi, LI Mei, YAN Qiu-Rong, LIU Yong-An. A Single Photon Counting Detector Based on One-Dimensional Vernier Anode [J]. Chin. Phys. Lett., 2010, 27(5): 058501. doi: 10.1088/0256-307X/27/5/058501
    [6]DU Gui-Qiang, JIANG Hai-tao, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. High-Efficiency Bistable Switching Based on One-Dimensional Photonic Crystals with Single-Negative Materials [J]. Chin. Phys. Lett., 2008, 25(8): 2900-2903.
    [7]WEI Peng-Fei, LI Chuang, ZHANG Chun-Mei, WANG Jian-Liang, LENG Yu-Xin, LI Ru-Xin. High-Conversion-Efficiency and Broadband Tunable Femtosecond Noncollinear Optical Parametric Amplifier [J]. Chin. Phys. Lett., 2008, 25(7): 2514-2517.
    [8]DOU Xiu-Ming, SUN Bao-Quan, HUANG She-Song, NI Hai-Qiao, NIU Zhi-Chuan. Single-Photon Emission from a Single InAs Quantum Dot [J]. Chin. Phys. Lett., 2008, 25(2): 501-504.
    [9]WEI Lai, TENG Xue-Lei, LU Ming, ZHAO You-Yuan, MA De-Wang, DING Jian-Dong. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film [J]. Chin. Phys. Lett., 2007, 24(12): 3416-3419.
    [10]YE Zongyuan, LI Yubing, DING Shengyao, BAO Zongyu, YANG Xiaoyun, RONG Chaofan, DING Xixiang, ZHENG Jinmei. Modified Method for Efficiency Calibration of High Energy γ Detector [J]. Chin. Phys. Lett., 1994, 11(1): 12-15.

Catalog

    Article views (56) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return