Experimental Proposal on Non-Hermitian Skin Effect by Two-dimensional Quantum Walk with a Single Trapped Ion

  • Corresponding author:

    Yiheng Lin, E-mail: yiheng@ustc.edu.cn

  • Received Date: January 24, 2024
  • Published Date: March 14, 2024
  • Non-Hermitian Hamiltonians are widely used in describing open systems with gain and loss, among which a key phenomenon is the non-Hermitian skin effect. Here we report an experimental scheme to realize a two-dimensional (2D) discrete-time quantum walk with non-Hermitian skin effect in a single trapped ion. It is shown that the coin and 2D walker states can be labeled in the spin of the ion and the coherent-state lattice of the ion motion, respectively. We numerically observe a directional bulk flow, whose orientations are controlled by dissipative parameters, showing the emergence of the non-Hermitian skin effect. We then discuss an experimental implementation of our scheme in a laser-controlled trapped Ca+ ion. Our experimental proposal may be applicable to research of dissipative quantum walk systems and may be able to generalize to other platforms, such as superconducting circuits and atoms in cavity.
  • Article Text

  • Acknowledgements: We thank W. Yi for helpful discussion. This work was supported by the National Natural Science Foundation of China (Grant Nos. 92165206 and 11974330), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301603), and the Fundamental Research Funds for the Central Universities.
  • [1]
    Aharonov Y, Davidovich L, Zagury N, 1993 Phys. Rev. A 48:1687 doi: 10.1103/PhysRevA.48.1687

    CrossRef Google Scholar

    [2]
    Kempe J, 2003 Contemp. Phys. 44:307 doi: 10.1080/00107151031000110776

    CrossRef Google Scholar

    [3]
    Kadian K, Garhwal S, Kumar A, 2021 Comput. Sci. Rev. 41:100419 doi: 10.1016/j.cosrev.2021.100419

    CrossRef Google Scholar

    [4]
    Childs A M, Goldstone J, 2004 Phys. Rev. A 70:042312 doi: 10.1103/PhysRevA.70.042312

    CrossRef Google Scholar

    [5]
    Portugal R, 2016 Phys. Rev. A 93:062335 doi: 10.1103/PhysRevA.93.062335

    CrossRef Google Scholar

    [6]
    Potoček V, Gábris A, Kiss T, Jex I, 2009 Phys. Rev. A 79:012325 doi: 10.1103/PhysRevA.79.012325

    CrossRef Google Scholar

    [7]
    Chakraborty S, Novo L, Ambainis A, Omar Y, 2016 Phys. Rev. Lett. 116:100501 doi: 10.1103/PhysRevLett.116.100501

    CrossRef Google Scholar

    [8]
    Campbell E, Khurana A, Montanaro A, 2019 Quantum 3:167 doi: 10.22331/q-2019-07-18-167

    CrossRef Google Scholar

    [9]
    Farhi E, Goldstone J, Gutmann S, 2008 Theory Comput. 4:169 doi: 10.4086/toc.2008.v004a008

    CrossRef Google Scholar

    [10]
    Douglas B L, Wang J B, 2008 J. Phys. A 41:075303 doi: 10.1088/1751-8113/41/7/075303

    CrossRef Google Scholar

    [11]
    Bruderer M, Plenio M B, 2016 Phys. Rev. A 94:062317 doi: 10.1103/PhysRevA.94.062317

    CrossRef Google Scholar

    [12]
    Kitagawa T, Rudner M S, Berg E, Demler E, 2010 Phys. Rev. A 82:033429 doi: 10.1103/PhysRevA.82.033429

    CrossRef Google Scholar

    [13]
    Zhang W W, Goyal S K, Gao F, Sanders B C, Simon C, 2016 New J. Phys. 18:093025 doi: 10.1088/1367-2630/18/9/093025

    CrossRef Google Scholar

    [14]
    Xiao L, Zhan X, Bian Z H, et al. 2017 Nat. Phys. 13:1117 doi: 10.1038/nphys4204

    CrossRef Google Scholar

    [15]
    Bepari K, Malik S, Spannowsky M, Williams S, 2022 Phys. Rev. D 106:056002 doi: 10.1103/PhysRevD.106.056002

    CrossRef Google Scholar

    [16]
    Rohde P P, Fitzsimons J F, Gilchrist A, 2012 Phys. Rev. Lett. 109:150501 doi: 10.1103/PhysRevLett.109.150501

    CrossRef Google Scholar

    [17]
    Chandrashekar C M, Busch T, 2014 Sci. Rep. 4:6583 doi: 10.1038/srep06583

    CrossRef Google Scholar

    [18]
    Wang Y, Shang Y, Xue P, 2017 Quantum Inf. Process. 16:221 doi: 10.1007/s11128-017-1675-y

    CrossRef Google Scholar

    [19]
    Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, Sanders B C, 2015 Phys. Rev. Lett. 114:140502 doi: 10.1103/PhysRevLett.114.140502

    CrossRef Google Scholar

    [20]
    Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W, Xue P, 2017 Phys. Rev. Lett. 119:130501 doi: 10.1103/PhysRevLett.119.130501

    CrossRef Google Scholar

    [21]
    Flurin E, Ramasesh V V, Hacohen-Gourgy S, Martin L S, Yao N Y, Siddiqi I, 2017 Phys. Rev. X 7:031023 doi: 10.1103/PhysRevX.7.031023

    CrossRef Google Scholar

    [22]
    Leibfried D, Blatt R, Monroe C, Wineland D, 2003 Rev. Mod. Phys. 75:281 doi: 10.1103/RevModPhys.75.281

    CrossRef Google Scholar

    [23]
    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T, 2009 Phys. Rev. Lett. 103:090504 doi: 10.1103/PhysRevLett.103.090504

    CrossRef Google Scholar

    [24]
    Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F, 2010 Phys. Rev. Lett. 104:100503 doi: 10.1103/PhysRevLett.104.100503

    CrossRef Google Scholar

    [25]
    Meng Y, Mei F, Chen G, Jia S T, 2020 Chin. Phys. B 29:070501 doi: 10.1088/1674-1056/ab8893

    CrossRef Google Scholar

    [26]
    Zhang H Q, Ai M Z, Cui J M, Han Y J, Li C F, Guo G C, 2021 Phys. Rev. A 104:022213 doi: 10.1103/PhysRevA.104.022213

    CrossRef Google Scholar

    [27]
    Lin Q, Qin H, Wang K K, Xiao L, Xue P, 2020 Chin. Phys. B 29:110303 doi: 10.1088/1674-1056/abaee8

    CrossRef Google Scholar

    [28]
    Okuma N, Kawabata K, Shiozaki K, Sato M, 2020 Phys. Rev. Lett. 124:086801 doi: 10.1103/PhysRevLett.124.086801

    CrossRef Google Scholar

    [29]
    Li T Y, Sun J Z, Zhang Y S, Yi W, 2021 Phys. Rev. Res. 3:023022 doi: 10.1103/PhysRevResearch.3.023022

    CrossRef Google Scholar

    [30]
    Zou D Y, Chen T, He W J, Bao J C, Lee C H, Sun H J, Zhang X D, 2021 Nat. Commun. 12:7201 doi: 10.1038/s41467-021-26414-5

    CrossRef Google Scholar

    [31]
    Li Y H, Liang C, Wang C Y, Lu C C, Liu Y C, 2022 Phys. Rev. Lett. 128:223903 doi: 10.1103/PhysRevLett.128.223903

    CrossRef Google Scholar

    [32]
    Yao Y Y, Xiang L, Guo Z X, et al. 2023 Nat. Phys. 19:1459 doi: 10.1038/s41567-023-02133-0

    CrossRef Google Scholar

    [33]
    Lin C Y, Su W C, Wu S T, 2020 Quantum Inf. Process. 19:272 doi: 10.1007/s11128-020-02775-6

    CrossRef Google Scholar

    [34]
    Lin Q, Yi W, Xue P, 2023 Nat. Commun. 14:6283 doi: 10.1038/s41467-023-42045-4

    CrossRef Google Scholar

    [35]
    Lin Z G, Lin Y H, Yi W, 2022 Phys. Rev. A 106:063112 doi: 10.1103/PhysRevA.106.063112

    CrossRef Google Scholar

    [36]
    Longhi S, 2019 Phys. Rev. Res. 1:023013 doi: 10.1103/PhysRevResearch.1.023013

    CrossRef Google Scholar

    [37]
    Liang Q, Xie D Z, Dong Z L, Li H W, Li H, Gadway B, Yi W, Yan B, 2022 Phys. Rev. Lett. 129:070401 doi: 10.1103/PhysRevLett.129.070401

    CrossRef Google Scholar

    [38]
    Lin Q, Li T Y, Xiao L, Wang K K, Yi W, Xue P, 2022 Phys. Rev. Lett. 129:113601 doi: 10.1103/PhysRevLett.129.113601

    CrossRef Google Scholar

    [39]
    Leibfried D, Meekhof D M, King B E, Monroe C, Itano W M, Wineland D J, 1996 Phys. Rev. Lett. 77:4281 doi: 10.1103/PhysRevLett.77.4281

    CrossRef Google Scholar

    [40]
    Kienzler D, Flühmann C, Negnevitsky V, Lo H Y, Marinelli M, Nadlinger D, Home J P, 2016 Phys. Rev. Lett. 116:140402 doi: 10.1103/PhysRevLett.116.140402

    CrossRef Google Scholar

    [41]
    Ding S Q, Maslennikov G, Hablützel R, Loh H Q, Matsukevich D, 2017 Phys. Rev. Lett. 119:150404 doi: 10.1103/PhysRevLett.119.150404

    CrossRef Google Scholar

    [42]
    Flühmann C, Home J P, 2020 Phys. Rev. Lett. 125:043602 doi: 10.1103/PhysRevLett.125.043602

    CrossRef Google Scholar

    [43]
    Clark C R, Tinkey H N, Sawyer B C, et al. 2021 Phys. Rev. Lett. 127:130505 doi: 10.1103/PhysRevLett.127.130505

    CrossRef Google Scholar

    [44]
    Lee P J, Brickman K A, Deslauriers L, Haljan P C, Duan L M, Monroe C, 2005 J. Opt. B 7:S371 doi: 10.1088/1464-4266/7/10/025

    CrossRef Google Scholar

    [45]
    Monroe C, Meekhof D M, King B E, Wineland D J, 1996 Science 272:1131 doi: 10.1126/science.272.5265.1131

    CrossRef Google Scholar

    [46]
    Hempel C, Lanyon B P, Jurcevic P, et al. 2013 Nat. Photon. 7:630 doi: 10.1038/nphoton.2013.172

    CrossRef Google Scholar

    [47]
    Valahu C H, Olaya-Agudelo V C, MacDonell R J, et al. 2023 Nat. Chem. 15:1503 doi: 10.1038/s41557-023-01300-3

    CrossRef Google Scholar

    [48]
    Hempel C, Maier C, Romero J, et al. 2018 Phys. Rev. X 8:031022 doi: 10.1103/PhysRevX.8.031022

    CrossRef Google Scholar

  • Related Articles

    [1]Yiyang Li, Jincheng Lu, Chen Wang, Jian-Hua Jiang. Non-Hermitian Physics in Mesoscopic Electron Transport Through Coupled Quantum Dots [J]. Chin. Phys. Lett., 2025, 42(4): 047303. doi: 10.1088/0256-307X/42/4/047303
    [2]Qiang-Kai-Lai Huang, Yun-Kai Liu, Pei-Chao Cao, Xue-Feng Zhu, Ying Li. Two-Dimensional Thermal Regulation Based on Non-Hermitian Skin Effect [J]. Chin. Phys. Lett., 2023, 40(10): 106601. doi: 10.1088/0256-307X/40/10/106601
    [3]Tianyu Li, Yong-Sheng Zhang, Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects [J]. Chin. Phys. Lett., 2021, 38(3): 030301. doi: 10.1088/0256-307X/38/3/030301
    [4]TAN Hua-Tang, TAN Rong, LI Gao-Xiang. Engineering Two-Mode Squeezed Vacuum Motional State of a Single Intracavity Trapped Ion [J]. Chin. Phys. Lett., 2008, 25(3): 945-948.
    [5]SHU Hua-Lin, GUO Bin, GUAN Hua, LIU Qu, HUANG Xue-Ren, GAO Ke-Lin. Experimental Improvement of Signal of a Single Laser-Cooled Trapped 40Ca+ Ion [J]. Chin. Phys. Lett., 2007, 24(5): 1217-1219.
    [6]WU Li-Jin, SHI Ting-Yun, GAO Ke-Lin. Effect of Laser Cooling on Frequency Standard of Single Ca+ Ion Trapped in a Radio-Frequency Paul Trap [J]. Chin. Phys. Lett., 2006, 23(1): 83-86.
    [7]QIN Tao, GAO Ke-Lin. A Robust Scheme for Two-Qubit Grover Quantum Search Alogrithm Based on the Motional and Internal States of a Single Cold Trapped Ion [J]. Chin. Phys. Lett., 2003, 20(11): 1910-1912.
    [8]WEI Lian-Fu, LIU Shi-Yong, LEI Xiao-Lin. Exact Quantum Logic Gates with a Single Trapped Cold Ion [J]. Chin. Phys. Lett., 2001, 18(11): 1533-1535.
    [9]WANG Kai-Ge, S. Maniscalco, A. Napoli, A. Messina. Generation of Pair Coherent States in Two Dimensional Trapped Ion [J]. Chin. Phys. Lett., 2001, 18(3): 367-369.
    [10]FANG Mao-Fa, ZHOU Peng, S. Swain. Quantum Entropic Dynamics of a Trapped Ion in a Standing Wave [J]. Chin. Phys. Lett., 2000, 17(12): 885-887.

Catalog

    Figures(4)

    Article views (25) PDF downloads (188) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return