Anisotropic Band Evolution of Bulk Black Phosphorus Induced by Uniaxial Tensile Strain

  • We investigate the anisotropic band structure and its evolution under tensile strains along different crystallographic directions in bulk black phosphorus (BP) using angle-resolved photoemission spectroscopy and density functional theory. The results show that there are band crossings in the Z–L (armchair) direction, but not in the Z–A (zigzag) direction. The corresponding dispersion-k distributions near the valence band maximum (VBM) exhibit quasi-linear or quadratic relationships, respectively. Along the armchair direction, the tensile strain expands the interlayer spacing and shifts the VBM to deeper levels with a slope of −16.2 meV/% strain. Conversely, the tensile strain along the zigzag direction compresses the interlayer spacing and causes the VBM to shift towards shallower levels with a slope of 13.1 meV/% strain. This work demonstrates an effective method for band engineering of bulk BP by uniaxial tensile strain, elucidates the mechanism behind it, and paves the way for strain-regulated optoelectronic devices based on bulk BP.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return