Processing math: 100%

A Simple Urea Approach to N-Doped α-Mo2C with Enhanced Superconductivity

  • Corresponding author:

    Huixia Luo, Email: luohx7@mail.sysu.edu.cn

  • Received Date: August 11, 2024
  • Published Date: September 22, 2024
  • Chemical doping is a critical factor in the development of new superconductors or optimizing the superconducting transition temperature (Tc) of the parent superconducting materials. Here, a new simple urea approach is developed to synthesize the N-doped α-Mo2C. Benefiting from the simple urea method, a broad superconducting dome is found in the Mo2C1xNx (0x0.49) compositions. X-ray diffraction results show that the structure of α-Mo2C remains unchanged and there is a variation of lattice parameters with nitrogen doping. Resistivity, magnetic susceptibility, and heat capacity measurement results confirm that Tc was strongly increased from 2.68 K (x=0) to 7.05 K (x=0.49). First-principles calculations and our analysis indicate that increasing nitrogen doping leads to a rise in the density of states at the Fermi level and doping-induced phonon softening, which enhances electron-phonon coupling. This results in an increase in Tc and a sharp rise in the upper critical field. Our findings provide a promising strategy for fabricating transition metal carbonitrides and provide a material platform for further study of the superconductivity of transition metal carbides.
  • Article Text

  • [1]
    Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P and Fan H J 2016 Adv. Sci. 3 1500286

    Google Scholar

    [2]
    Hardy G F and Hulm J K 1954 Phys. Rev. 93 1004

    Google Scholar

    [3]
    Matthias B T and Hulm J K 1952 Phys. Rev. 87 799

    Google Scholar

    [4]
    Willens R H, Buehler E and Matthias B T 1967 Phys. Rev. 159 327

    Google Scholar

    [5]
    Morton N, James B W, Wostenholm G H, Pomfret D G, Davies M R and Dykins J L 1971 J. Less Common. Met. 25 97

    Google Scholar

    [6]
    Ge Y, Ma S, Bao K, Tao Q, Zhao X, Feng X, Li L, Liu B, Zhu P and Cui T 2019 Inorg. Chem. Front. 6 1282

    Google Scholar

    [7]
    Ge Y, Song H, Bao K, Ma S, Li L, Tao Q, Zhu P, Liu B, Duan D and Cui T 2021 J. Alloys Compd. 881 160631

    Google Scholar

    [8]
    Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y and Barsoum M W 2013 J. Am. Chem. Soc. 135 15966

    Google Scholar

    [9]
    Naguib M, Mochalin V N, Barsoum M W and Gogotsi Y 2014 Adv. Mater. 26 992

    Google Scholar

    [10]
    Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F and Talapin D V 2020 Science 369 979

    Google Scholar

    [11]
    Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y and Barsoum M W 2016 Adv. Funct. Mater. 26 3118

    Google Scholar

    [12]
    Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W and Rosen J 2015 Scr. Mater. 108 147

    Google Scholar

    [13]
    Anasori B, Lukatskaya M R and Gogotsi Y 2017 Nat. Rev. Mater. 2 16098

    Google Scholar

    [14]
    Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M and Ren W C 2015 Nat. Mater. 14 1135

    Google Scholar

    [15]
    Fan Y, Xu C, Liu X, Ma C, Yin Y, Cheng H M, Ren W and Li X 2020 NPG. Asia Mater. 12 60

    Google Scholar

    [16]
    Caylan O R and Buke G C 2021 Sci. Rep. 11 8247

    Google Scholar

    [17]
    Ravuri S S, Wrobel P S, Gorantla S, Bazioti C, Sunding M F, Lis K, Jedrzejewski R, Sartori S, Diplas S, Gunnæs A E and Bachmatiuk A 2024 Nanotechnology 35 155601

    Google Scholar

    [18]
    Zeng L Y, Hu X W, Zhou Y Z, Liu Y, Boswell M, Xie W W, Li K, Li L F, Yu P F, Zhang C, Guo W M, Yao D X and Luo H X 2023 Innovation Mater. 1 100042

    Google Scholar

    [19]
    Margine E R and Giustino F 2014 Phys. Rev. B 90 014518

    Google Scholar

    [20]
    Bogoljubov N N, Tolmachov V V and Širkov D V 1958 Fortschr. Phys. 6 605

    Google Scholar

    [21]
    Suhl H, Matthias B T and Walker L R 1959 Phys. Rev. Lett. 3 552

    Google Scholar

    [22]
    Kawashima T, Takayama-Muromachi E and McMillan P F 2007 Physica C 460-462 651

    Google Scholar

    [23]
    Lee J, Park J K, Lee J W, Heo Y, Oh Y S, Lee J S, Cho J and Jeen H 2020 RSC Adv. 10 44339

    Google Scholar

    [24]
    Yin X Z, Wang H, Wang Q H, Jiao N, Ni M Y, Zheng M M, Lu H Y and Zhang P 2023 Chin. Phys. Lett. 40 097404

    Google Scholar

    [25]
    Zhao N N, Guo P J, Lu X Q, Han Q, Liu K and Lu Z Y 2020 Phys. Rev. B 101 195144

    Google Scholar

    [26]
    Wei H, Wang J, Lin Q, Zou Y, Chen X, Zhao H, Li J, Jin H, Lei Y and Wang S 2021 Nano Energy 86 106047

    Google Scholar

    [27]
    Jing S, Zhang L, Luo L, Lu J, Yin S, Shen P K and Tsiakaras P 2018 Appl. Catal. B 224 533

    Google Scholar

    [28]
    Chi J Q, Yan K L, Gao W K, Dong B, Shang X, Liu Y R, Li X, Chai Y M and Liu C G 2017 J. Alloys Compd. 714 26

    Google Scholar

    [29]
    Jiang R, Fan J, Hu L, Dou Y, Mao X and Wang D 2018 Electrochim. Acta 261 578

    Google Scholar

    [30]
    Kohn W and Sham L J 1965 Phys. Rev. 140 A1133

    Google Scholar

    [31]
    Blöchl P E 1994 Phys. Rev. B 50 17953

    Google Scholar

    [32]
    Kresse G and Hafner J 1993 Phys. Rev. B 47 558

    Google Scholar

    [33]
    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169

    Google Scholar

    [34]
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Google Scholar

    [35]
    Giordano C, Erpen C, Yao W T, Milke B and Antonietti M 2009 Chem. Mater. 21 5136

    Google Scholar

    [36]
    Jin T, Sang X, Unocic R R, Kinch R T, Liu X, Hu J, Liu H and Dai S 2018 Adv. Mater. 30 1707512

    Google Scholar

    [37]
    Chen P, Xiao T Y, Qian Y H, Li S S and Yu S H 2013 Adv. Mater. 25 3192

    Google Scholar

    [38]
    Li X Z, Fang Y Y, Lin X Q, Tian M, An X C, Fu Y, Li R, Jin J and Ma J T 2015 J. Mater. Chem. A 3 17392

    Google Scholar

    [39]
    Zhao Y, Kamiya K, Hashimoto K and Nakanishi S 2015 J. Am. Chem. Soc. 137 110

    Google Scholar

    [40]
    Pan L F, Li Y H, Yang S, Liu P F, Yu M Q and Yang H G 2014 Chem. Commun. 50 13135

    Google Scholar

    [41]
    Liu Y, Yu G, Li G D, Sun Y, Asefa T, Chen W and Zou X 2015 Angew. Chem. Int. Ed. 54 10752

    Google Scholar

    [42]
    Zhang Z, Fang Y Q, Wang D, Zhang S N, Mu G and Huang F Q 2020 J. Mater. Chem. C 8 2682

    Google Scholar

    [43]
    Clogston A M 1962 Phys. Rev. Lett. 9 266

    Google Scholar

    [44]
    Zeng L Y, Hu X W, Boubeche M, Li K, Li L F, Yu P F, Wang K W, Zhang C, Jin K, Yao D X and Luo H X 2023 Sci. China Phys. Mech. Astron. 66 277412

    Google Scholar

    [45]
    He Y Y, You Y X, Zeng L Y, Guo S, Zhou H W, Li K, Huang Y H, Yu P F, Zhang C, Cao C and Luo H X 2022 Phys. Rev. B 105 054513

    Google Scholar

    [46]
    Wu J, Xiao G, Zhu Q, Liu B, Cui Y, Wu S, Cao G H and Ren Z 2022 Inorg. Chem. Front. 9 4594

    Google Scholar

    [47]
    Zhu X, Han F, Mu G, Cheng P, Tang J, Ju J, Tanigaki K and Wen H H 2010 Phys. Rev. B 81 104525

    Google Scholar

    [48]
    Luo H X, Xie W W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y M and Cava R J 2016 Chem. Mater. 28 1927

    Google Scholar

    [49]
    McMillan W L 1968 Phys. Rev. 167 331

    Google Scholar

    [50]
    Zeng L Y, Hu X W, Guo S, Lin G T, Song J, Li K, He Y Y, Huang Y H, Zhang C, Yu P F, Ma J, Yao D X and Luo H X 2022 Phys. Rev. B 106 134501

    Google Scholar

    [51]
    Xiao G R, Zhu Q Q, Cui Y W, Yang W Z, Li B Z, Wu S Q, Cao G H and Ren Z 2021 Sci. China Phys. Mech. Astron. 64 107411

    Google Scholar

    [52]
    Zhou Y X, Li B, Lou Z F, Chen H C, Chen Q, Xu B J, Wu C X, Du J H, Yang J H, Wang H D and Fang M H 2021 Sci. China Phys. Mech. Astron. 64 247411

    Google Scholar

    [53]
    Boubeche M, Yu J, Chushan L, Huichao W, Zeng L Y, He Y Y, Wang X P, Su W Z, Wang M, Yao D X, Wang Z J and Luo H X 2021 Chin. Phys. Lett. 38 037401

    Google Scholar

    [54]
    Klein O 1952 Nature 169 578

    Google Scholar

    [55]
    Savini G, Ferrari A C and Giustino F 2010 Phys. Rev. Lett. 105 037002

    Google Scholar

    [56]
    Jin X T, Yan X W and Gao M 2020 Phys. Rev. B 101 134518

    Google Scholar

  • Related Articles

    [1]NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators [J]. Chin. Phys. Lett., 2012, 29(6): 060502. doi: 10.1088/0256-307X/29/6/060502
    [2]S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay [J]. Chin. Phys. Lett., 2012, 29(3): 030202. doi: 10.1088/0256-307X/29/3/030202
    [3]LI Ji-Na, ZHANG Shun-Li. Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation [J]. Chin. Phys. Lett., 2011, 28(3): 030201. doi: 10.1088/0256-307X/28/3/030201
    [4]ZHAO Yuan, ZHANG Shun-Li, LOU Sen-Yue. Approximate Symmetry Reduction and Infinite Series Solutions to the Nonlinear Wave Equation with Damping [J]. Chin. Phys. Lett., 2009, 26(10): 100201. doi: 10.1088/0256-307X/26/10/100201
    [5]JIA Man, WANG Jian-Yong, LOU Sen-Yue. Approximate Symmetry Reduction to the Perturbed One-Dimensional Nonlinear Schrödinger Equation [J]. Chin. Phys. Lett., 2009, 26(2): 020201. doi: 10.1088/0256-307X/26/2/020201
    [6]A. K. Alomari, M. S. M. Noorani, R. Nazar. Solutions of Heat-Like and Wave-Like Equations with Variable Coefficients by Means of the Homotopy Analysis Method [J]. Chin. Phys. Lett., 2008, 25(2): 589-592.
    [7]ZHANG Shun-Li, WANG Peng-Zhou, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation [J]. Chin. Phys. Lett., 2006, 23(10): 2625-2628.
    [8]ZHANG Shun-Li, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations [J]. Chin. Phys. Lett., 2006, 23(3): 527-530.
    [9]YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627.
    [10]LOU Sen-yue. A Direct Perturbation Method: Nonlinear Schrodinger Equation with Loss [J]. Chin. Phys. Lett., 1999, 16(9): 659-661.

Catalog

    Article views (12) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return