Photonic Generation of Chirp-Rate-Tunable Microwave Waveforms Using Temporal Cavity Solitons with Agile Repetition Rate
-
Abstract
Chirp-rate-tunable microwave waveforms (CTMWs) with dynamically tunable parameters are of basic interest to many practical applications. Recently, photonic generation of microwave signals has made their bandwidths wider and more convenient for optical fiber transmission. An all-optical method for generation of multiband CTMWs is proposed and demonstrated on all-fiber architecture, relying on dual temporal cavity solitons with agile repetition rate. In the experiment, the triangular optical chirp microwave waveforms with bandwidth above 0.45 GHz (ranging from 1.45 GHz to 1.9 GHz) are obtained, and the chirp rate reaches 0.9 GHz/ms. The reconfigurability is also demonstrated by adjusting the control signal. This all-optical approach provides a technical basis for compact, multi-band reconfigurable microwave photonics transmission and reception systems. -
Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant Nos. 61675009 and 61325021), and the Key Program of Beijing Municipal Natural Science Foundation (Grant No. KZ201910005006).
-
References
[1] de Chatellus H G, Cortes L R, Schnebelin C, Burla M, Azana J 2018 Nat. Commun. 9 2438 doi: 10.1038/s41467-018-04822-4[2] Ghelfi P, Laghezza F, Scotti F, Onori D, Bogoni A 2016 J. Lightwave Technol. 34 500 doi: 10.1109/JLT.2015.2482390[3] Behroozpour B, Sandborn P A M, Quack N, Seok T J, Matsui Y, Wu M C, Boser B E 2017 IEEE J. Solid-State Circuits 52 161 doi: 10.1109/JSSC.2016.2621755[4] Dong Y K, Zhu Z D, Tian X N, Qiu L Q, Ba D X 2021 J. Lightwave Technol. 39 2275 doi: 10.1109/JLT.2021.3050772[5] Neill J L, Harris B J, Steber A L, Douglass K O, Plusquellic D F, Pate B H 2013 Opt. Express 21 19743 doi: 10.1364/OE.21.019743[6] Hao T, Liu Y, Tang J, Cen Q, Li W, Zhu N, Dai Y, Capmany J, Yao J, Li M 2020 Adv. Photon. 2 044001 doi: 10.1117/1.AP.2.4.044001[7] Maleki L 2011 Nat. Photon. 5 728 doi: 10.1038/nphoton.2011.293[8] Torres-Company V, Weiner A M 2014 Laser Photon. Rev. 8 368 doi: 10.1002/lpor.201300126[9] Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A, Hansch T W, Picque N 2016 Nat. Photon. 10 27 doi: 10.1038/nphoton.2015.250[10] Shi J W, Kuo F M, Chen N W, Set S Y, Huang C B, Bowers J E 2012 IEEE Photon. J. 4 215 doi: 10.1109/JPHOT.2012.2183119[11] Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018 Science 361 eaan8083 doi: 10.1126/science.aan8083[12] Herr T, Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L, Kippenberg T J 2014 Nat. Photon. 8 145 doi: 10.1038/nphoton.2013.343[13] Liu J Q, Lucas E, Raja A S, He J J, Riemensberger J, Wang R N, Karpov M, Guo H R, Bouchand R, Kippenberg T J 2020 Nat. Photon. 14 486 doi: 10.1038/s41566-020-0617-x[14] Riemensberger J, Lukashchuk A, Karpov M, Weng W L, Lucas E, Liu J Q, Kippenberg T J 2020 Nature 581 164 doi: 10.1038/s41586-020-2239-3[15] Obrzud E, Lecomte S, Herr T 2017 Nat. Photon. 11 600 doi: 10.1038/nphoton.2017.140[16] Zhu G Y, Tian M F, Almokhtar M, Qin F F, Li B H, Zhou M Y, Gao F, Yang Y, Ji X, He S Q, Wang Y J 2022 Chin. Phys. Lett. 39 123401 doi: 10.1088/0256-307X/39/12/123401[17] Leo F, Coen S, Kockaert P, Gorza S P, Emplit P, Haelterman M 2010 Nat. Photon. 4 471 doi: 10.1038/nphoton.2010.120[18] Huang Y L, Li Q, Han J Y, Jia Z X, Yu Y S, Yang Y D, Xiao J L, Wu J L, Zhang D M, Huang Y Z, Qin W P, Qin G S 2019 Optica 6 1491 doi: 10.1364/OPTICA.6.001491[19] Melchert O, Demircan A, Yulin A 2020 Sci. Rep. 10 8849 doi: 10.1038/s41598-020-65426-x[20] Li Q, Jia Z X, Li Z R, Yang Y D, Xiao J L, Chen S W, Qin G S, Huang Y Z, Qin W P 2017 Aip Adv. 7 075215 doi: 10.1063/1.4994861[21] Stephan G M, Tam T T, Blin S, Besnard P, Tetu M 2005 Phys. Rev. A 71 043809 doi: 10.1103/PhysRevA.71.043809[22] Xiong W H, Yao C F, Li P X, Wang Y X, Zhu F Y 2022 IEEE Photon. J. 14 1530004 doi: 10.1109/JPHOT.2022.3173500[23] Lihachev G, Riemensberger J, Weng W L, Liu J Q, Tian H, Siddharth A, Snigirev V, Shadymov V, Voloshin A, Wang R N, He J J, Bhave S A, Kippenberg T J 2022 Nat. Commun. 13 3522 doi: 10.1038/s41467-022-30911-6[24] Wun J M, Wei C C, Chen J H, Goh C S, Set S Y, Shi J W 2013 Opt. Express 21 11475 doi: 10.1364/OE.21.011475[25] Zhou P, Zhang F Z, Guo Q S, Pan S L 2016 Opt. Express 24 018460 doi: 10.1364/OE.24.018460[26] Zhang H, Zhang F Z, Pan S L, Ye X W, Liu S F, Chen H 2020 IEEE Photon. Technol. Lett. 32 1037 doi: 10.1109/LPT.2020.3011411 -
Related Articles
[1] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, Yanfeng Guo. Nontrivial Topological States in BaSn5 Superconductor Probed by de Haas–van Alphen Quantum Oscillations [J]. Chin. Phys. Lett., 2022, 39(6): 067101. doi: 10.1088/0256-307X/39/6/067101 [2] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn3 [J]. Chin. Phys. Lett., 2021, 38(10): 107403. doi: 10.1088/0256-307X/38/10/107403 [3] Min Wu, Hongwei Zhang, Xiangde Zhu, Jianwei Lu, Guolin Zheng, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, Mingliang Tian. Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe5 [J]. Chin. Phys. Lett., 2019, 36(6): 067201. doi: 10.1088/0256-307X/36/6/067201 [4] Junaid Ali Khan, Muhammad Asif Zahoor Raja, Ijaz Mansoor Qureshi. Novel Approach for a van der Pol Oscillator in the Continuous Time Domain [J]. Chin. Phys. Lett., 2011, 28(11): 110205. doi: 10.1088/0256-307X/28/11/110205 [5] ZHAO Lin, LIU Hai-Yun, ZHANG Wen-Tao, MENG Jian-Qiao, JIA Xiao-Wen, LIU Guo-Dong, DONG Xiao-Li, CHEN Gen-Fu, LUO Jian-Lin, WANG Nan-Lin, LU Wei, WANG Gui-Ling, ZHOU Yong, ZHU Yong, WANG Xiao-Yang, XU Zu-Yan, CHEN Chuang-Tian, ZHOU Xing-Jiang. Multiple Nodeless Superconducting Gaps in (Ba0.6K0.4)Fe2As2 Superconductor from Angle-Resolved Photoemission Spectroscopy [J]. Chin. Phys. Lett., 2008, 25(12): 4402-4405. [6] LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant [J]. Chin. Phys. Lett., 2008, 25(8): 2789-2790. [7] LI Kang, CHAMOUN Nidal. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics [J]. Chin. Phys. Lett., 2007, 24(5): 1183-1186. [8] ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole [J]. Chin. Phys. Lett., 2005, 22(10): 2496-2499. [9] HOU Guang, HUANG Min-Xin, ZHANG Yong-De. Quantum Multiple Access Channel [J]. Chin. Phys. Lett., 2002, 19(1): 4-6. [10] WU Zhong-chao. Quantum Creation of a Schwarzschild-de Sitter Black Hole [J]. Chin. Phys. Lett., 1997, 14(4): 317-320.