Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves

  • Received Date: April 18, 2022
  • Published Date: July 31, 2022
  • Dual-species single-atom array in optical tweezers has several advantages over the single-species atom array as a platform for quantum computing and quantum simulation. Thus, creating the defect-free dual-species single-atom array with atom numbers over hundreds is essential. As recent experiments demonstrated, one of the main difficulties lies in designing an efficient algorithm to rearrange the stochastically loaded dual-species atoms arrays into arbitrary demanded configurations. We propose a heuristic connectivity optimization algorithm to provide the near-fewest number of atom moves. Our algorithm introduces the concept of using articulation points in an undirected graph to optimize connectivity as a critical consideration for arranging the atom moving paths. Tested in array size of hundreds atoms and various configurations, our algorithm shows a high success rate (>97%), low extra atom moves ratio, good scalability, and flexibility. Furthermore, we propose a complementary step to solve the problem of atom loss during the rearrangement.
  • Article Text

  • [1]
    Wilk T, Gaëtan A, Evellin C, Wolters J, Miroshnychenko Y, Grangier P and Browaeys A 2010 Phys. Rev. Lett. 104 010502 doi: 10.1103/PhysRevLett.104.010502

    CrossRef Google Scholar

    [2]
    Henriet L, Beguin L, Signoles A, Lahaye T, B, Reymond G O and Jurczak C 2020 Quantum 4 327 doi: 10.22331/q-2020-09-21-327

    CrossRef Google Scholar

    [3]
    Saffman M 2019 Natl. Sci. Rev. 6 24 doi: 10.1093/nsr/nwy088

    CrossRef Google Scholar

    [4]
    Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82 2313 doi: 10.1103/RevModPhys.82.2313

    CrossRef Google Scholar

    [5]
    Xia T, Lichtman M, Maller K, Carr A, Piotrowicz M, Isenhower L and Saffman M 2015 Phys. Rev. Lett. 114 100503 doi: 10.1103/PhysRevLett.114.100503

    CrossRef Google Scholar

    [6]
    Fu Z, Xu P, Sun Y, Liu Y, He X, Li X, Liu M, Li R, Wang J, Liu L and Zhan M S 2022 Phys. Rev. A 105 042430 doi: 10.1103/PhysRevA.105.042430

    CrossRef Google Scholar

    [7]
    Levine H, Keesling A, Semeghini G, Omran A, Wang T T, Ebadi S, Bernien H, Greiner M, Vuletić V, Pichler H and Lukin M D 2019 Phys. Rev. Lett. 123 170503 doi: 10.1103/PhysRevLett.123.170503

    CrossRef Google Scholar

    [8]
    Wu T Y, Kumar A, Giraldo F and Weiss D S 2019 Nat. Phys. 15 538 doi: 10.1038/s41567-019-0478-8

    CrossRef Google Scholar

    [9]
    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G and Saffman M 2010 Phys. Rev. Lett. 104 010503 doi: 10.1103/PhysRevLett.104.010503

    CrossRef Google Scholar

    [10]
    Beterov I I and Saffman M 2015 Phys. Rev. A 92 042710 doi: 10.1103/PhysRevA.92.042710

    CrossRef Google Scholar

    [11]
    Belyansky R, Young J T, Bienias P, Eldredge Z, Kaufman A M, Zoller P and Gorshkov A V 2019 Phys. Rev. Lett. 123 213603 doi: 10.1103/PhysRevLett.123.213603

    CrossRef Google Scholar

    [12]
    Auger J M, Bergamini S and Browne D E 2017 Phys. Rev. A 96 052320 doi: 10.1103/PhysRevA.96.052320

    CrossRef Google Scholar

    [13]
    Weimer H, Muller M, Lesanovsky I, Zoller P and Buchler H P 2010 Nat. Phys. 6 382 doi: 10.1038/nphys1614

    CrossRef Google Scholar

    [14]
    Browaeys A and Lahaye T 2020 Nat. Phys. 16 132 doi: 10.1038/s41567-019-0733-z

    CrossRef Google Scholar

    [15]
    Liu L R, Hood J D, Yu Y, Zhang J T, Hutzler N R, Rosenband T and Ni K K 2018 Science 360 900 doi: 10.1126/science.aar7797

    CrossRef Google Scholar

    [16]
    Liu L R, Hood J D, Yu Y, Zhang J T, Wang K, Lin Y W, Rosenband T and Ni K K 2019 Phys. Rev. X 9 021039 doi: 10.1103/PhysRevX.9.021039

    CrossRef Google Scholar

    [17]
    Zhang J T, Yu Y, Cairncross W B, Wang K, Picard L R B, Hood J D, Lin Y W, Hutson J M and Ni K K 2020 Phys. Rev. Lett. 124 253401 doi: 10.1103/PhysRevLett.124.253401

    CrossRef Google Scholar

    [18]
    He X D, Wang K P, Zhuang J, Xu P, Gao X, Guo R J, Sheng C, Liu M, Wang J, Li J M, Shlyapnikov G V, Zhan M S 2020 Science 370 331 doi: 10.1126/science.aba7468

    CrossRef Google Scholar

    [19]
    Sheng C, Hou J Y, He X D, Wang K P, Guo R J, Mamat B, Xu P, Lin M, Wang J and Zhan M S 2022 Phys. Rev. Lett. 128 083202 doi: 10.1103/PhysRevLett.128.083202

    CrossRef Google Scholar

    [20]
    Lee W, Kim H and Ahn J 2017 Phys. Rev. A 95 053424 doi: 10.1103/PhysRevA.95.053424

    CrossRef Google Scholar

    [21]
    Sheng C, Hou J, He X, Xu P, Wang K, Zhuang J, Li X, Liu M, Wang J and Zhan M S 2021 Phys. Rev. Res. 3 023008 doi: 10.1103/PhysRevResearch.3.023008

    CrossRef Google Scholar

    [22]
    Schymik K N, Lienhard V, Barredo D, Scholl P, Williams H, Browaeys A and Lahaye T 2020 Phys. Rev. A 102 063107 doi: 10.1103/PhysRevA.102.063107

    CrossRef Google Scholar

    [23]
    Barredo D, Léséleuc S, Lienhard V, Lahaye T and Browaeys A 2016 Science 354 1021 doi: 10.1126/science.aah3778

    CrossRef Google Scholar

    [24]
    Barredo D, Lienhard V, Léséleuc S, Lahaye T and Browaeys A 2018 Nature 561 79 doi: 10.1038/s41586-018-0450-2

    CrossRef Google Scholar

    [25]
    Lee W, Kim H and Ahn J 2016 Opt. Express 24 9816 doi: 10.1364/OE.24.009816

    CrossRef Google Scholar

    [26]
    Kumar A, Wu T Y, Giraldo F and Weiss D S 2018 Nature 561 83 doi: 10.1038/s41586-018-0458-7

    CrossRef Google Scholar

    [27]
    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E R, Krajenbrink A, Senko C, Vuletic V, Greiner M and Lukin M D 2016 Science 354 1024 doi: 10.1126/science.aah3752

    CrossRef Google Scholar

    [28]
    Singh K, Anand S, Pocklington A, Kemp J T and Bernien H 2022 Phys. Rev. X 12 011040 doi: 10.1103/PhysRevX.12.011040

    CrossRef Google Scholar

    [29]
    Zhang J T, Picard L R B, Carincross W B, Wang K, Yu Y, Fang F and Ni K K 2022 Quantum Sci. Technol. 7 035006 doi: 10.1088/2058-9565/ac676c

    CrossRef Google Scholar

  • Related Articles

    [1]XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice [J]. Chin. Phys. Lett., 2009, 26(9): 090303. doi: 10.1088/0256-307X/26/9/090303
    [2]WANG De-Hua. Recurrence Spectra of the Rydberg Hydrogen Atom near Two Parallel Metal Surfaces [J]. Chin. Phys. Lett., 2006, 23(10): 2745-2748.
    [3]CAI Xiang-Hua, ZHENG Wan-Hua, MA Xiao-Tao, REN Gang, XIA Jian-Bai. Two-Dimensional Photonic Band-Gap Defect Modes with Deformed Lattice [J]. Chin. Phys. Lett., 2005, 22(9): 2290-2293.
    [4]MENG Xu-Jun, ZHU Xi-Rui, TIAN Ming-Feng, JIANG Min-Hao, WANG Zhi-Gang. Free or Quasi-Free Electronic Density of States in a Confined Atom [J]. Chin. Phys. Lett., 2005, 22(2): 310-313.
    [5]JI Xian-Ming, YIN Jian-Ping. One- and Two-Dimensional Arrays of Double-Well Optical Traps for Cold Atoms or Molecules [J]. Chin. Phys. Lett., 2004, 21(12): 2399-2402.
    [6]HE Jiang-Ping, SHEN Lin-Fang, ZHANG Quan, HE Sai-Ling. A Pseudospectral Time-Domain Algorithm for Calculating the BandStructure of a Two-Dimensional Photonic Crystal [J]. Chin. Phys. Lett., 2002, 19(4): 507-510.
    [7]XIAO San-Shui, HE Sai-Ling, LIN Qing-Chun, SHEN Lin-Fang. Defect Mode Computation in Two-Dimensional Photonic Crystals Consisting of Nearly-Free-Electron Metals [J]. Chin. Phys. Lett., 2001, 18(9): 1218-1221.
    [8]ZHANG Jing-Tao, XU Zhi-Zhan. Momentum Transfer of an Atom Moving in an Optical Cavity [J]. Chin. Phys. Lett., 2001, 18(8): 1069-1071.
    [9]ZHANG Jing-Tao, FENG Xun-Li, XU Zhi-Zhan. Emission Spectra of a Moving Atom in an Electromagnetic Field [J]. Chin. Phys. Lett., 2000, 17(4): 270-271.
    [10]MA Zhong-quan, LIU Bai-xin. Enhancement of Atomic Rearrangement in Top Surface Layers by Low Energy Ions [J]. Chin. Phys. Lett., 1998, 15(9): 668-670.

Catalog

    Article views (197) PDF downloads (299) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return