Express Letter
Novel and Self-Consistency Analysis of the QCD Running Coupling in Both the Perturbative and Nonperturbative Domains
-
Abstract
The quantum chromodynamics (QCD) coupling is the most important parameter for achieving precise QCD predictions. By using the well measured effective coupling defined from the Bjorken sum rules as a basis, we suggest a novel self-consistency way to fix the at all scales: The QCD light-front holographic model is adopted for its infrared behavior, and the fixed-order pQCD prediction under the principle of maximum conformality (PMC) is used for its high-energy behavior. Using the PMC scheme-and-scale independent perturbative series, and by transforming it into the one under the physical V scheme, we observe that a precise running behavior in both the perturbative and nonperturbative domains with a smooth transition from small to large scales can be achieved. -
-
References
[1] Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343 doi: 10.1103/PhysRevLett.30.1343[2] Politzer H D 1973 Phys. Rev. Lett. 30 1346 doi: 10.1103/PhysRevLett.30.1346[3] Prosperi G M, Raciti M, and Simolo C 2007 Prog. Part. Nucl. Phys. 58 387 doi: 10.1016/j.ppnp.2006.09.001[4] Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1 doi: 10.1016/j.ppnp.2016.04.003[5] Brodsky S J, de Teramond G F, Dosch H G, and Erlich J 2015 Phys. Rep. 584 1 doi: 10.1016/j.physrep.2015.05.001[6] Grunberg G 1980 Phys. Lett. B 95 70 doi: 10.1016/0370-26938090402-5[7] Grunberg G 1984 Phys. Rev. D 29 2315 doi: 10.1103/PhysRevD.29.2315[8] Bjorken J D 1966 Phys. Rev. 148 1467 doi: 10.1103/PhysRev.148.1467[9] Bjorken J D 1970 Phys. Rev. D 1 1376 doi: 10.1103/PhysRevD.1.1376[10] Deur A et al.. 2004 Phys. Rev. Lett. 93 212001 doi: 10.1103/PhysRevLett.93.212001[11] Deur A, Burkert V, Chen J P, and Korsch W 2007 Phys. Lett. B 650 244 doi: 10.1016/j.physletb.2007.05.015[12] Deur A et al.. 2008 Phys. Rev. D 78 032001 doi: 10.1103/PhysRevD.78.032001[13] Deur A et al.. 2014 Phys. Rev. D 90 012009 doi: 10.1103/PhysRevD.90.012009[14] Yu Q, Wu X G, Zhou H, and Huang X D 2021 Eur. Phys. J. C 81 690 doi: 10.1140/epjc/s10052-021-09495-w[15] Baikov P A, Chetyrkin K G, and Kuhn J H 2010 Phys. Rev. Lett. 104 132004 doi: 10.1103/PhysRevLett.104.132004[16] Baikov P A, Chetyrkin K G, Kuhn J H, and Rittinger J 2012 J. High Energy Phys. 201207 017 doi: 10.1007/JHEP072012017[17] Brodsky S J, de Teramond G F, and Deur A 2010 Phys. Rev. D 81 096010 doi: 10.1103/PhysRevD.81.096010[18] Zhang Q L, Wu X G, Zheng X C, Wang S Q, Fu H B, and Fang Z Y 2014 Chin. Phys. Lett. 31 051202 doi: 10.1088/0256-307X/31/5/051202[19] Deur A, Brodsky S J, and de Teramond G F 2015 Phys. Lett. B 750 528 doi: 10.1016/j.physletb.2015.09.063[20] Deur A, Brodsky S J, and de Teramond G F 2016 Phys. Lett. B 757 275 doi: 10.1016/j.physletb.2016.03.077[21] Deur A, Shen J M, Wu X G, Brodsky S J, and de Teramond G F 2017 Phys. Lett. B 773 98 doi: 10.1016/j.physletb.2017.07.024[22] Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038 doi: 10.1103/PhysRevD.85.034038[23] Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002 doi: 10.1103/PhysRevLett.109.042002[24] Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026 doi: 10.1103/PhysRevD.86.085026[25] Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001 doi: 10.1103/PhysRevLett.110.192001[26] Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027 doi: 10.1103/PhysRevD.89.014027[27] Wu X G et al.. 2015 Rep. Prog. Phys. 78 126201 doi: 10.1088/0034-4885/78/12/126201[28] Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706 doi: 10.1016/j.ppnp.2019.05.003[29] Petermann A 1953 Helv. Phys. Acta 26 499[30] Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300 doi: 10.1103/PhysRev.95.1300[31] Callan C G and J 1970 Phys. Rev. D 2 1541 doi: 10.1103/PhysRevD.2.1541[32] Symanzik K 1970 Commun. Math. Phys. 18 227 doi: 10.1007/BF01649434[33] Peterman A 1979 Phys. Rep. 53 157 doi: 10.1016/0370-15737990014-0[34] Brodsky S J, Lepage G P, and Mackenzie P B 1983 Phys. Rev. D 28 228 doi: 10.1103/PhysRevD.28.228[35] Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006 doi: 10.1103/PhysRevD.95.094006[36] Wu X G, Shen J M, Du B L, and Brodsky S J 2018 Phys. Rev. D 97 094030 doi: 10.1103/PhysRevD.97.094030[37] Huang X D et al.. 2021 arXiv:2109.12356 [hep-ph][38] Brodsky S J and Lu H J 1995 Phys. Rev. D 51 3652 doi: 10.1103/PhysRevD.51.3652[39] Appelquist T, Dine M, and Muzinich I J 1977 Phys. Lett. B 69 231 doi: 10.1016/0370-26937790651-7[40] Fischler W 1977 Nucl. Phys. B 129 157 doi: 10.1016/0550-32137790026-8[41] Peter M 1997 Phys. Rev. Lett. 78 602 doi: 10.1103/PhysRevLett.78.602[42] Schröder Y 1999 Phys. Lett. B 447 321 doi: 10.1016/S0370-26939900010-6[43] Brodsky S J, Hoang A H, Kuhn J H, and Teubner T 1995 Phys. Lett. B 359 355 doi: 10.1016/0370-26939501070-7[44] Brodsky S J, Ji C R, Pang A, and Robertson D G 1998 Phys. Rev. D 57 245 doi: 10.1103/PhysRevD.57.245[45] Brodsky S J, Gill M S, Melles M, and Rathsman J 1998 Phys. Rev. D 58 116006 doi: 10.1103/PhysRevD.58.116006[46] Bi H Y, Wu X G, Ma Y, Ma H H, Brodsky S J, and Mojaza M 2015 Phys. Lett. B 748 13 doi: 10.1016/j.physletb.2015.06.056[47] Chetyrkin K G 2005 Nucl. Phys. B 710 499 doi: 10.1016/j.nuclphysb.2005.01.011[48] Czakon M 2005 Nucl. Phys. B 710 485 doi: 10.1016/j.nuclphysb.2005.01.012[49] Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002 doi: 10.1103/PhysRevLett.118.082002[50] Zyla P A et al.. Particle Data Group 2020 Prog. Theor. Exp. Phys. 2020 083C01 doi: 10.1093/ptep/ptaa104[51] Zheng X C, Wu X G, Wang S Q, Shen J M, and Zhang Q L 2013 J. High Energy Phys. 201310 117 doi: 10.1007/JHEP102013117[52] Huang X D, Wu X G, Yu Q, Zheng X C, and Zeng J 2021 Nucl. Phys. B 969 115466 doi: 10.1016/j.nuclphysb.2021.115466[53] Basdevant J L 1972 Fortschr. Phys. 20 283 doi: 10.1002/prop.19720200502[54] Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182 doi: 10.1140/epjc/s10052-019-6704-9[55] Ackerstaff K et al.. OPAL Collaboration 1999 Eur. Phys. J. C 7 571 doi: 10.1007/s100529901061[56] Brodsky S J, Menke S, Merino C, and Rathsman J 2003 Phys. Rev. D 67 055008 doi: 10.1103/PhysRevD.67.055008[57] Gross D J and Smith C H L 1969 Nucl. Phys. B 14 337 doi: 10.1016/0550-32136990213-2[58] Kim J H et al.. 1998 Phys. Rev. Lett. 81 3595 doi: 10.1103/PhysRevLett.81.3595[59] Airapetian A et al.. HERMES Collaboration 2007 Phys. Rev. D 75 012007 doi: 10.1103/PhysRevD.75.012007[60] Adolph C et al.. COMPASS Collaboration 2016 Phys. Lett. B 753 18 doi: 10.1016/j.physletb.2015.11.064[61] Abe K et al.. E143 Collaboration 1998 Phys. Rev. D 58 112003 doi: 10.1103/PhysRevD.58.112003[62] Abe K et al.. E154 Collaboration 1997 Phys. Lett. B 405 180 doi: 10.1016/S0370-26939700641-2[63] Anthony P L et al.. E155 Collaboration 2003 Phys. Lett. B 553 18 doi: 10.1016/S0370-26930203015-0[64] Adeva B et al.. Spin Muon Collaboration 1998 Phys. Rev. D 58 112001 doi: 10.1103/PhysRevD.58.112001 -
Related Articles
[1] YOU Fu-Yi, WANG Zhi-Gang, WAN Shao-Long. Analysis of the Vertexes ΣQΞQ*K* and Ξ'QΣQ*K* within Light-Cone QCD Sum Rules [J]. Chin. Phys. Lett., 2012, 29(2): 021101. doi: 10.1088/0256-307X/29/2/021101 [2] ZHOU Mi, JIANG Yong-Heng, LU Guo-Hui, GAO Shu-Qin, LI Zuo-Wei. Excitonic Coupling between B and Q Transitions in Porphyrin Aggregates [J]. Chin. Phys. Lett., 2009, 26(8): 083201. doi: 10.1088/0256-307X/26/8/083201 [3] WANG Zhi-Gang, WANG Zhi-Bin. Analysis of Vertex D*D*ρ with Light-Cone QCD Sum Rules [J]. Chin. Phys. Lett., 2008, 25(2): 444-446. [4] WANG Zhi-Gang, WAN Shao-Long. Analysis of X(1576) as a Tetraquark State with the QCD Sum Rules [J]. Chin. Phys. Lett., 2006, 23(12): 3208-3210. [5] ZHANG Zhen-Yu, LIU Jue-Ping. Stabilization and Consistency for Subtracted and Unsubtracted QCD Sum Rules for 0++ Scalar Glueball [J]. Chin. Phys. Lett., 2006, 23(11): 2920-2923. [6] FANG Xiang-Zheng, RUAN Tu-Nan. Analysis of the Yrast Bands with q-Deformed Moment of Inertia [J]. Chin. Phys. Lett., 2001, 18(2): 193-195. [7] YAO Yu-Jie, ZHANG Hai-Xia, ZHU Jiang-Ming, LIU Guang-Zhou, WU Shi-Shu. A Possible New Effect of Self-Consistency in the Relativistic Hartree-Fock Approximation [J]. Chin. Phys. Lett., 2000, 17(10): 720-722. [8] B. P. Nigam. Perturbative Quantum Chromodynamics αs4-Order Corrections to the Ratio R for τ Decay [J]. Chin. Phys. Lett., 1998, 15(10): 711-712. [9] JIANG Yong-yuan, FENG Yu-wen, ZHOU Zhong-xiang, LI Yan, SUN Xiu-dong, XU Ke-bin. Two-dimensional Perturbative Analysis of Slant Grating in Photorefractive Crystals in an External Electric Field [J]. Chin. Phys. Lett., 1998, 15(6): 423-425. [10] NIE Xiangfu, TANG Guide, HAN Baoshan. Self-collapse of Dumbbell Domains in Garnet Bubble Films [J]. Chin. Phys. Lett., 1991, 8(8): 420-423. -
Supplements
Other Related Supplements
-
Cover image
79KB
-
-
Cited by
Periodical cited type(1)
1. Lhachemi, M.N.Y., Garate, I. Phononic dynamical axion in magnetic Dirac insulators. Physical Review B, 2024, 109(14): 144304. DOI:10.1103/PhysRevB.109.144304 Other cited types(0)