Express Letter

Novel and Self-Consistency Analysis of the QCD Running Coupling αs(Q) in Both the Perturbative and Nonperturbative Domains

  • Received Date: May 26, 2022
  • Published Date: June 30, 2022
  • The quantum chromodynamics (QCD) coupling αs is the most important parameter for achieving precise QCD predictions. By using the well measured effective coupling αsg1(Q) defined from the Bjorken sum rules as a basis, we suggest a novel self-consistency way to fix the αs at all scales: The QCD light-front holographic model is adopted for its infrared behavior, and the fixed-order pQCD prediction under the principle of maximum conformality (PMC) is used for its high-energy behavior. Using the PMC scheme-and-scale independent perturbative series, and by transforming it into the one under the physical V scheme, we observe that a precise αs running behavior in both the perturbative and nonperturbative domains with a smooth transition from small to large scales can be achieved.
  • Article Text

  • [1]
    Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343 doi: 10.1103/PhysRevLett.30.1343

    CrossRef Google Scholar

    [2]
    Politzer H D 1973 Phys. Rev. Lett. 30 1346 doi: 10.1103/PhysRevLett.30.1346

    CrossRef Google Scholar

    [3]
    Prosperi G M, Raciti M, and Simolo C 2007 Prog. Part. Nucl. Phys. 58 387 doi: 10.1016/j.ppnp.2006.09.001

    CrossRef Google Scholar

    [4]
    Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1 doi: 10.1016/j.ppnp.2016.04.003

    CrossRef Google Scholar

    [5]
    Brodsky S J, de Teramond G F, Dosch H G, and Erlich J 2015 Phys. Rep. 584 1 doi: 10.1016/j.physrep.2015.05.001

    CrossRef Google Scholar

    [6]
    Grunberg G 1980 Phys. Lett. B 95 70 doi: 10.1016/0370-26938090402-5

    CrossRef Google Scholar

    [7]
    Grunberg G 1984 Phys. Rev. D 29 2315 doi: 10.1103/PhysRevD.29.2315

    CrossRef Google Scholar

    [8]
    Bjorken J D 1966 Phys. Rev. 148 1467 doi: 10.1103/PhysRev.148.1467

    CrossRef Google Scholar

    [9]
    Bjorken J D 1970 Phys. Rev. D 1 1376 doi: 10.1103/PhysRevD.1.1376

    CrossRef Google Scholar

    [10]
    Deur A et al.. 2004 Phys. Rev. Lett. 93 212001 doi: 10.1103/PhysRevLett.93.212001

    CrossRef Google Scholar

    [11]
    Deur A, Burkert V, Chen J P, and Korsch W 2007 Phys. Lett. B 650 244 doi: 10.1016/j.physletb.2007.05.015

    CrossRef Google Scholar

    [12]
    Deur A et al.. 2008 Phys. Rev. D 78 032001 doi: 10.1103/PhysRevD.78.032001

    CrossRef Google Scholar

    [13]
    Deur A et al.. 2014 Phys. Rev. D 90 012009 doi: 10.1103/PhysRevD.90.012009

    CrossRef Google Scholar

    [14]
    Yu Q, Wu X G, Zhou H, and Huang X D 2021 Eur. Phys. J. C 81 690 doi: 10.1140/epjc/s10052-021-09495-w

    CrossRef Google Scholar

    [15]
    Baikov P A, Chetyrkin K G, and Kuhn J H 2010 Phys. Rev. Lett. 104 132004 doi: 10.1103/PhysRevLett.104.132004

    CrossRef Google Scholar

    [16]
    Baikov P A, Chetyrkin K G, Kuhn J H, and Rittinger J 2012 J. High Energy Phys. 201207 017 doi: 10.1007/JHEP072012017

    CrossRef Google Scholar

    [17]
    Brodsky S J, de Teramond G F, and Deur A 2010 Phys. Rev. D 81 096010 doi: 10.1103/PhysRevD.81.096010

    CrossRef Google Scholar

    [18]
    Zhang Q L, Wu X G, Zheng X C, Wang S Q, Fu H B, and Fang Z Y 2014 Chin. Phys. Lett. 31 051202 doi: 10.1088/0256-307X/31/5/051202

    CrossRef Google Scholar

    [19]
    Deur A, Brodsky S J, and de Teramond G F 2015 Phys. Lett. B 750 528 doi: 10.1016/j.physletb.2015.09.063

    CrossRef Google Scholar

    [20]
    Deur A, Brodsky S J, and de Teramond G F 2016 Phys. Lett. B 757 275 doi: 10.1016/j.physletb.2016.03.077

    CrossRef Google Scholar

    [21]
    Deur A, Shen J M, Wu X G, Brodsky S J, and de Teramond G F 2017 Phys. Lett. B 773 98 doi: 10.1016/j.physletb.2017.07.024

    CrossRef Google Scholar

    [22]
    Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038 doi: 10.1103/PhysRevD.85.034038

    CrossRef Google Scholar

    [23]
    Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002 doi: 10.1103/PhysRevLett.109.042002

    CrossRef Google Scholar

    [24]
    Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026 doi: 10.1103/PhysRevD.86.085026

    CrossRef Google Scholar

    [25]
    Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001 doi: 10.1103/PhysRevLett.110.192001

    CrossRef Google Scholar

    [26]
    Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027 doi: 10.1103/PhysRevD.89.014027

    CrossRef Google Scholar

    [27]
    Wu X G et al.. 2015 Rep. Prog. Phys. 78 126201 doi: 10.1088/0034-4885/78/12/126201

    CrossRef Google Scholar

    [28]
    Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706 doi: 10.1016/j.ppnp.2019.05.003

    CrossRef Google Scholar

    [29]
    Petermann A 1953 Helv. Phys. Acta 26 499

    Google Scholar

    [30]
    Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300 doi: 10.1103/PhysRev.95.1300

    CrossRef Google Scholar

    [31]
    Callan C G and J 1970 Phys. Rev. D 2 1541 doi: 10.1103/PhysRevD.2.1541

    CrossRef Google Scholar

    [32]
    Symanzik K 1970 Commun. Math. Phys. 18 227 doi: 10.1007/BF01649434

    CrossRef Google Scholar

    [33]
    Peterman A 1979 Phys. Rep. 53 157 doi: 10.1016/0370-15737990014-0

    CrossRef Google Scholar

    [34]
    Brodsky S J, Lepage G P, and Mackenzie P B 1983 Phys. Rev. D 28 228 doi: 10.1103/PhysRevD.28.228

    CrossRef Google Scholar

    [35]
    Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006 doi: 10.1103/PhysRevD.95.094006

    CrossRef Google Scholar

    [36]
    Wu X G, Shen J M, Du B L, and Brodsky S J 2018 Phys. Rev. D 97 094030 doi: 10.1103/PhysRevD.97.094030

    CrossRef Google Scholar

    [37]
    Huang X D et al.. 2021 arXiv:2109.12356 [hep-ph]

    Google Scholar

    [38]
    Brodsky S J and Lu H J 1995 Phys. Rev. D 51 3652 doi: 10.1103/PhysRevD.51.3652

    CrossRef Google Scholar

    [39]
    Appelquist T, Dine M, and Muzinich I J 1977 Phys. Lett. B 69 231 doi: 10.1016/0370-26937790651-7

    CrossRef Google Scholar

    [40]
    Fischler W 1977 Nucl. Phys. B 129 157 doi: 10.1016/0550-32137790026-8

    CrossRef Google Scholar

    [41]
    Peter M 1997 Phys. Rev. Lett. 78 602 doi: 10.1103/PhysRevLett.78.602

    CrossRef Google Scholar

    [42]
    Schröder Y 1999 Phys. Lett. B 447 321 doi: 10.1016/S0370-26939900010-6

    CrossRef Google Scholar

    [43]
    Brodsky S J, Hoang A H, Kuhn J H, and Teubner T 1995 Phys. Lett. B 359 355 doi: 10.1016/0370-26939501070-7

    CrossRef Google Scholar

    [44]
    Brodsky S J, Ji C R, Pang A, and Robertson D G 1998 Phys. Rev. D 57 245 doi: 10.1103/PhysRevD.57.245

    CrossRef Google Scholar

    [45]
    Brodsky S J, Gill M S, Melles M, and Rathsman J 1998 Phys. Rev. D 58 116006 doi: 10.1103/PhysRevD.58.116006

    CrossRef Google Scholar

    [46]
    Bi H Y, Wu X G, Ma Y, Ma H H, Brodsky S J, and Mojaza M 2015 Phys. Lett. B 748 13 doi: 10.1016/j.physletb.2015.06.056

    CrossRef Google Scholar

    [47]
    Chetyrkin K G 2005 Nucl. Phys. B 710 499 doi: 10.1016/j.nuclphysb.2005.01.011

    CrossRef Google Scholar

    [48]
    Czakon M 2005 Nucl. Phys. B 710 485 doi: 10.1016/j.nuclphysb.2005.01.012

    CrossRef Google Scholar

    [49]
    Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002 doi: 10.1103/PhysRevLett.118.082002

    CrossRef Google Scholar

    [50]
    Zyla P A et al.. Particle Data Group 2020 Prog. Theor. Exp. Phys. 2020 083C01 doi: 10.1093/ptep/ptaa104

    CrossRef Google Scholar

    [51]
    Zheng X C, Wu X G, Wang S Q, Shen J M, and Zhang Q L 2013 J. High Energy Phys. 201310 117 doi: 10.1007/JHEP102013117

    CrossRef Google Scholar

    [52]
    Huang X D, Wu X G, Yu Q, Zheng X C, and Zeng J 2021 Nucl. Phys. B 969 115466 doi: 10.1016/j.nuclphysb.2021.115466

    CrossRef Google Scholar

    [53]
    Basdevant J L 1972 Fortschr. Phys. 20 283 doi: 10.1002/prop.19720200502

    CrossRef Google Scholar

    [54]
    Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182 doi: 10.1140/epjc/s10052-019-6704-9

    CrossRef Google Scholar

    [55]
    Ackerstaff K et al.. OPAL Collaboration 1999 Eur. Phys. J. C 7 571 doi: 10.1007/s100529901061

    CrossRef Google Scholar

    [56]
    Brodsky S J, Menke S, Merino C, and Rathsman J 2003 Phys. Rev. D 67 055008 doi: 10.1103/PhysRevD.67.055008

    CrossRef Google Scholar

    [57]
    Gross D J and Smith C H L 1969 Nucl. Phys. B 14 337 doi: 10.1016/0550-32136990213-2

    CrossRef Google Scholar

    [58]
    Kim J H et al.. 1998 Phys. Rev. Lett. 81 3595 doi: 10.1103/PhysRevLett.81.3595

    CrossRef Google Scholar

    [59]
    Airapetian A et al.. HERMES Collaboration 2007 Phys. Rev. D 75 012007 doi: 10.1103/PhysRevD.75.012007

    CrossRef Google Scholar

    [60]
    Adolph C et al.. COMPASS Collaboration 2016 Phys. Lett. B 753 18 doi: 10.1016/j.physletb.2015.11.064

    CrossRef Google Scholar

    [61]
    Abe K et al.. E143 Collaboration 1998 Phys. Rev. D 58 112003 doi: 10.1103/PhysRevD.58.112003

    CrossRef Google Scholar

    [62]
    Abe K et al.. E154 Collaboration 1997 Phys. Lett. B 405 180 doi: 10.1016/S0370-26939700641-2

    CrossRef Google Scholar

    [63]
    Anthony P L et al.. E155 Collaboration 2003 Phys. Lett. B 553 18 doi: 10.1016/S0370-26930203015-0

    CrossRef Google Scholar

    [64]
    Adeva B et al.. Spin Muon Collaboration 1998 Phys. Rev. D 58 112001 doi: 10.1103/PhysRevD.58.112001

    CrossRef Google Scholar

  • Related Articles

    [1]YOU Fu-Yi, WANG Zhi-Gang, WAN Shao-Long. Analysis of the Vertexes ΣQΞQ*K* and Ξ'QΣQ*K* within Light-Cone QCD Sum Rules [J]. Chin. Phys. Lett., 2012, 29(2): 021101. doi: 10.1088/0256-307X/29/2/021101
    [2]ZHOU Mi, JIANG Yong-Heng, LU Guo-Hui, GAO Shu-Qin, LI Zuo-Wei. Excitonic Coupling between B and Q Transitions in Porphyrin Aggregates [J]. Chin. Phys. Lett., 2009, 26(8): 083201. doi: 10.1088/0256-307X/26/8/083201
    [3]WANG Zhi-Gang, WANG Zhi-Bin. Analysis of Vertex D*D*ρ with Light-Cone QCD Sum Rules [J]. Chin. Phys. Lett., 2008, 25(2): 444-446.
    [4]WANG Zhi-Gang, WAN Shao-Long. Analysis of X(1576) as a Tetraquark State with the QCD Sum Rules [J]. Chin. Phys. Lett., 2006, 23(12): 3208-3210.
    [5]ZHANG Zhen-Yu, LIU Jue-Ping. Stabilization and Consistency for Subtracted and Unsubtracted QCD Sum Rules for 0++ Scalar Glueball [J]. Chin. Phys. Lett., 2006, 23(11): 2920-2923.
    [6]FANG Xiang-Zheng, RUAN Tu-Nan. Analysis of the Yrast Bands with q-Deformed Moment of Inertia [J]. Chin. Phys. Lett., 2001, 18(2): 193-195.
    [7]YAO Yu-Jie, ZHANG Hai-Xia, ZHU Jiang-Ming, LIU Guang-Zhou, WU Shi-Shu. A Possible New Effect of Self-Consistency in the Relativistic Hartree-Fock Approximation [J]. Chin. Phys. Lett., 2000, 17(10): 720-722.
    [8]B. P. Nigam. Perturbative Quantum Chromodynamics αs4-Order Corrections to the Ratio R for τ Decay [J]. Chin. Phys. Lett., 1998, 15(10): 711-712.
    [9]JIANG Yong-yuan, FENG Yu-wen, ZHOU Zhong-xiang, LI Yan, SUN Xiu-dong, XU Ke-bin. Two-dimensional Perturbative Analysis of Slant Grating in Photorefractive Crystals in an External Electric Field [J]. Chin. Phys. Lett., 1998, 15(6): 423-425.
    [10]NIE Xiangfu, TANG Guide, HAN Baoshan. Self-collapse of Dumbbell Domains in Garnet Bubble Films [J]. Chin. Phys. Lett., 1991, 8(8): 420-423.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. Lhachemi, M.N.Y., Garate, I. Phononic dynamical axion in magnetic Dirac insulators. Physical Review B, 2024, 109(14): 144304. DOI:10.1103/PhysRevB.109.144304

    Other cited types(0)

Catalog

    Article views (229) PDF downloads (205) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return