Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/BasicLatin.js

Atomically Dispersed Ni Single-Atoms Anchored on N-Doped Graphene Aerogels for Highly Efficient Electromagnetic Wave Absorption

  • Received Date: December 14, 2021
  • Published Date: March 31, 2022
  • Uniformly dispersed nickel single atoms (SAs) are experimentally prepared on ultralight N-doped graphene aerogels (Ni-SA@NRGA). The experimental results show that Ni-SAs in graphene aerogels can improve the conduction, polarization losses, and impedance matching properties of the Ni-SA@NRGA. As a result, the minimum reflection loss (RL,min) of Ni-SA@NRGA is 49.46 dB with a matching thickness of 2.0 mm and the broadest efficient absorption bandwidth is 3.12 GHz at a low thickness of 1.5 mm. Meanwhile, even with a matching thickness of 1.2–2.0 mm, the RL,min value of Ni-SA@NRGA can reach 20 dB. The current study demonstrates the significance of incorporating metal single atoms into graphene aerogel for electromagnetic wave absorption.
  • Article Text

  • [1]
    Zhao H Q, Cheng Y, Zhang Z, Zhang B S, Pei C C, Fan F Y, and Ji G B 2021 Carbon 173 501 doi: 10.1016/j.carbon.2020.11.035

    CrossRef Google Scholar

    [2]
    Zhu X, Yan F, Li C Y, Qi L H, Yuan H R, Liu Y F, Zhu C L, and Chen Y J 2021 Chin. Phys. Lett. 38 015201 doi: 10.1088/0256-307X/38/1/015201

    CrossRef Google Scholar

    [3]
    Wang Z C, Wei R B, Gu J W, Liu H, Liu C T, Luo C J, Kong J, Shao Q, Wang N, Guo Z H, and Liu X B 2018 Carbon 139 1126 doi: 10.1016/j.carbon.2018.08.014

    CrossRef Google Scholar

    [4]
    Zhang X C, Xu J, Yuan H R, Zhang S, Ouyang Q Y, Zhu C L, Zhang X T, and Chen Y J 2019 ACS Appl. Mater. & Interfaces 11 39100 doi: 10.1021/acsami.9b13751

    CrossRef Google Scholar

    [5]
    Che R C, Peng L M, Duan X F, Chen Q, and Liang X L 2004 Adv. Mater. 16 401 doi: 10.1002/adma.200306460

    CrossRef Google Scholar

    [6]
    Sun H, Che R C, You X, Jiang Y S, Yang Z B, Deng J, Qiu L B, and Peng H S 2014 Adv. Mater. 26 8120 doi: 10.1002/adma.201403735

    CrossRef Google Scholar

    [7]
    Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J, and Che R C 2016 Adv. Mater. 28 486 doi: 10.1002/adma.201503149

    CrossRef Google Scholar

    [8]
    Zhang X, Yan F, Zhang S, Yuan H R, Zhu C L, Zhang X T, and Chen Y J 2018 ACS Appl. Mater. & Interfaces 10 24920 doi: 10.1021/acsami.8b07107

    CrossRef Google Scholar

    [9]
    Sultanov F, Daulbayev C, Bakbolat B, and Daulbayev O 2020 Adv. Colloid Interface Sci. 285 102281 doi: 10.1016/j.cis.2020.102281

    CrossRef Google Scholar

    [10]
    Zhi D D, Li T, Li J Z, Ren H S, and Meng F B 2021 Compos. Part B 211 108642 doi: 10.1016/j.compositesb.2021.108642

    CrossRef Google Scholar

    [11]
    Hu C G, Mou Z Y, Lu G W, Chen N, Dong Z L, Hu M J, and Qu L T 2013 Phys. Chem. Chem. Phys. 15 13038 doi: 10.1039/c3cp51253c

    CrossRef Google Scholar

    [12]
    Ren S, Yu Q, Yu X H, Rong P, Jiang L Y, and Jiang J C 2020 Sci. Chin. Mater. 63 903 doi: 10.1007/s40843-019-1286-1

    CrossRef Google Scholar

    [13]
    Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, and Chen J 2019 Adv. Mater. 31 1903955 doi: 10.1002/adma.201903955

    CrossRef Google Scholar

    [14]
    Zhang X C, Shi Y N, Xu J, Ouyang Q Y, Zhang X, Zhu C L, Zhang X L, and Chen Y J 2022 Nano-Micro Lett. 14 27 doi: 10.1007/s40820-021-00773-6

    CrossRef Google Scholar

    [15]
    Wu L Z, Shu R W, Zhang J B, and Chen X T 2022 J. Colloid Interface Sci. 608 1212 doi: 10.1016/j.jcis.2021.10.112

    CrossRef Google Scholar

    [16]
    Cheng Y, Zhao S Y, Li H B, He S, Veder J P, Johannessen B, Xiao J P, Lu S F, Pan J, Chisholm M F, Yang S Z, Liu C, Chen J G, and Jiang S P 2019 Appl. Catal. B: Environ. 243 294 doi: 10.1016/j.apcatb.2018.10.046

    CrossRef Google Scholar

    [17]
    Zhao H B, Cheng J B, Zhu J Y, and Wang Y Z 2019 J. Mater. Chem. C 7 441 doi: 10.1039/C8TC05239E

    CrossRef Google Scholar

    [18]
    Cao F H, Yan F, Xu J, Zhu C L, Qi L H, Li C Y, and Chen Y J 2021 Carbon 174 79 doi: 10.1016/j.carbon.2020.12.013

    CrossRef Google Scholar

    [19]
    Huang X G, Yu G Y, Zhang Y K, Zhang M J, and Shao G F 2021 Chem. Eng. J. 426 131894 doi: 10.1016/j.cej.2021.131894

    CrossRef Google Scholar

    [20]
    Zhang K C, Gao X B, Zhang Q, Li T P, Chen H, and Chen X F 2017 J. Alloys Compd. 721 268 doi: 10.1016/j.jallcom.2017.06.013

    CrossRef Google Scholar

    [21]
    Xu J, Zhang X, Zhao Z B, Yuan H R, Zhang S, Zhu C L, Zhang X T, and Chen Y J 2020 Carbon 159 357 doi: 10.1016/j.carbon.2019.12.020

    CrossRef Google Scholar

    [22]
    Yuan C Z, Zhan L Y, Liu S J, Chen F, Lin H J, Wu X L, and Chen J R 2020 Inorg. Chem. Front. 7 1719 doi: 10.1039/C9QI01688K

    CrossRef Google Scholar

    [23]
    Zhang X C, Zhang X, Yuan H R, Li K Y, Ouyang Q Y, Zhu C L, Zhang S, and Chen Y J 2020 Chem. Eng. J. 383 123208 doi: 10.1016/j.cej.2019.123208

    CrossRef Google Scholar

    [24]
    Pandey R, Tekumalla S, and Gupta M 2019 J. Alloys Compd. 770 473 doi: 10.1016/j.jallcom.2018.08.147

    CrossRef Google Scholar

    [25]
    Xu D W, Yang S, Chen P, Yu Q, Xiong X H, and Wang J 2019 Carbon 146 301 doi: 10.1016/j.carbon.2019.02.005

    CrossRef Google Scholar

    [26]
    Liu J W, Che R C, Chen H J, Zhang F, Xia F, Wu Q S, and Wang M 2012 Small 8 1214 doi: 10.1002/smll.201102245

    CrossRef Google Scholar

    [27]
    Che R C, Zhi C Y, Liang C Y, and Zhou X G 2006 Appl. Phys. Lett. 88 033105 doi: 10.1063/1.2165276

    CrossRef Google Scholar

    [28]
    Wu Z C, Pei K, Xing L S, Yu X F, You W B, and Che R C 2019 Adv. Funct. Mater. 29 1901448 doi: 10.1002/adfm.201901448

    CrossRef Google Scholar

    [29]
    Huang Y W, Wang Y J, Wei S C, Liang Y, Huang W, Wang B, and Xu B S 2019 Int. J. Mod. Phys. B 33 1940055 doi: 10.1142/S0217979219400551

    CrossRef Google Scholar

    [30]
    Chen T T, Deng F, Zhu J, Chen C F, Sun G B, Ma S L, and Yang X J 2012 J. Mater. Chem. 22 15190 doi: 10.1039/c2jm31171b

    CrossRef Google Scholar

    [31]
    Ma T, Yuan M W, Islam S M, Li H F, Ma S L, Sun G B, and Yang X J 2016 J. Alloys Compd. 678 468 doi: 10.1016/j.jallcom.2016.03.243

    CrossRef Google Scholar

    [32]
    Yin P F, Deng Y, Zhang L M, Wu W J, Wang J, Feng X, Sun X Y, Li H Y, and Tao Y 2018 Ceram. Int. 44 20896 doi: 10.1016/j.ceramint.2018.08.096

    CrossRef Google Scholar

    [33]
    Wang D T, Wang X C, Zhang X, Yuan H R, and Chen Y J 2020 Chin. Phys. Lett. 37 045201 doi: 10.1088/0256-307X/37/4/045201

    CrossRef Google Scholar

    [34]
    Tang J M, Liang N, Wang L, Li J, Tian G, Zhang D, Feng S H, and Yue H J 2019 Carbon 152 575 doi: 10.1016/j.carbon.2019.06.049

    CrossRef Google Scholar

    [35]
    Xu J, Liu M J, Zhang X C, Li B, Zhang X, Zhang X L, Zhu C L, and Chen Y J 2022 Appl. Phys. Rev. 9 011402 doi: 10.1063/5.0067791

    CrossRef Google Scholar

    [36]
    Chen J P, Jia H, Liu Z, Kong Q Q, Hou Z H, Xie L J, Sun G H, Zhang S C, and Chen C M 2020 Carbon 164 59 doi: 10.1016/j.carbon.2020.03.049

    CrossRef Google Scholar

    [37]
    Liu B, Li J H, Wang L F, Ren J H, and Xu Y F 2017 Compos. Part A 97 141 doi: 10.1016/j.compositesa.2017.03.001

    CrossRef Google Scholar

    [38]
    Cai Z X, Su L, Wang H J, Niu M, Gao H F, Lu D, and Li M Z 2020 ACS Appl. Mater. & Interfaces 12 8555 doi: 10.1021/acsami.9b20636

    CrossRef Google Scholar

    [39]
    Cai Z X, Su L, Wang H J, Niu M, Tao L T, Lu D, Xu L, Li M Z, and Gao H F 2021 ACS Appl. Mater. & Interfaces 13 16704 doi: 10.1021/acsami.1c02906

    CrossRef Google Scholar

  • Related Articles

    [1]OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2012, 29(2): 025201. doi: 10.1088/0256-307X/29/2/025201
    [2]LI Xue-Chen, JIA Peng-Ying, ZHAO Na. Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure [J]. Chin. Phys. Lett., 2011, 28(4): 045203. doi: 10.1088/0256-307X/28/4/045203
    [3]SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium [J]. Chin. Phys. Lett., 2008, 25(11): 4054-4057.
    [4]LIANG Zhuo, LUO Hai-Yun, Wang Xin-Xin, LV Bo, GUAN Zhi-Cheng, WANGLi-Ming. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2008, 25(6): 2136-2139.
    [5]FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2007, 24(8): 2304-2307.
    [6]LIU Shu-Hua, DONG Li-Fang, LIU Fu-Cheng, LI Shu-Feng, LI Xue-Chen, WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System [J]. Chin. Phys. Lett., 2006, 23(12): 3316-3319.
    [7]ZHANG Yuan-Tao, WANG De-Zhen, WANG Yan-Hui, LIU Cheng-Sen. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier [J]. Chin. Phys. Lett., 2005, 22(1): 171-174.
    [8]OU Qiong-Rong, MENG Yue-Dong, XU Xu, SHU Xing-Sheng, REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2004, 21(7): 1317-1319.
    [9]DONG Li-Fang, HE Ya-Feng, YIN Zeng-Qian, CHAI Zhi-Fang. Experimental Observation of Traveling Hexagon Patterns in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2003, 20(9): 1524-1526.
    [10]DONG Li-Fang, LI Xue-Chen, YIN Zeng-Qian, QIAN Sheng-Fa, OUYANG Ji-Ting, WANG Long. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmosphere Pressure [J]. Chin. Phys. Lett., 2001, 18(10): 1380-1382.

Catalog

    Article views (258) PDF downloads (436) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return