Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link
-
Abstract
We demonstrate the coherent transfer of an ultrastable optical frequency reference over a 490 km noisy field fiber link. The fiber-induced phase noise power spectrum density per-unit-length at 1 Hz offset frequency can reach up to 510 rad$^2⋅$Hz$−1\cdot$km$^{-1}$, which is much higher than the fiber noise observed in previous reports. This extreme level of phase noise is mainly due to the fiber link laying underground along the highway. Appropriate phase-locked loop parameters are chosen to complete the active compensation of fiber noise by measuring the intensity fluctuation of additional phase noise and designing a homemade digital frequency division phase discriminator with a large phase detection range of $2^{12} \pi$ rad. Finally, a noise suppression intensity of approximately 40 dB at 1 Hz is obtained, with fractional frequency instability of $1.1\times10^{-14}$ at 1 s averaging time, and $3.7\times10^{-19}$ at 10000 s. The transfer system will be used for remote atomic clock comparisons and optical frequency distribution over a long-distance communication network established in China. -
-
References
[1] Ludlow A D, Boyd M M, Ye J, Peik E, and Schmidt P O 2015 Rev. Mod. Phys. 87 637 doi: 10.1103/RevModPhys.87.637[2] Marti G E, Hutson R B, Goban A, Campbell S L, Poli N, and Ye J 2018 Phys. Rev. Lett. 120 103201 doi: 10.1103/PhysRevLett.120.103201[3] Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A et al.. 2017 Nat. Photon. 11 48 doi: 10.1038/nphoton.2016.231[4] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 doi: 10.1038/s41586-018-0738-2[5] Clivati C, Ambrosini R, Artz T, Bertarini A, Bortolotti C, Frittelli M, Levi F, Mura A, Maccaferri G, Nanni M et al.. 2017 Sci. Rep. 7 40992 doi: 10.1038/srep40992[6] Wang B, Zhu X, Gao C, Bai Y, Dong J W, and Wang L J 2015 Sci. Rep. 5 13851 doi: 10.1038/srep13851[7] Lisdat C, Grosche G, Quintin N, Shi C, Raupach S M, Grebing C, Nicolodi D, Stefani F, Al-Masoudi A, Dörscher S et al.. 2016 Nat. Commun. 7 12443 doi: 10.1038/ncomms12443[8] Hu L, Poli N, Salvi L, and Tino G M 2017 Phys. Rev. Lett. 119 263601 doi: 10.1103/PhysRevLett.119.263601[9] Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C et al.. 2018 Nat. Phys. 14 437 doi: 10.1038/s41567-017-0042-3[10] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043 doi: 10.1103/PhysRevD.94.124043[11] Roberts B M, Delva P, Al-Masoudi A, Amy-Klein A, Bærentsen C, Baynham C F A, Benkler E, Bilicki S, Bize S, Bowden W, Calvert J, Cambier V, Cantin E, Curtis E A, Dörscher S, Favier M, Frank F, Gill P, Godun R M, Grosche G, Guo C, Hees A, Hill I R, Hobson R, Huntemann N, Kronjäger J, Koke S, Kuhl A, Lange R, Legero T, Lipphardt B, Lisdat C, Lodewyck J, Lopez O, Margolis H S, Álvarez-Martínez H, Meynadier F, Ozimek F, Peik E, Pottie P E, Quintin N, Sanner C, Sarlo L D, Schioppo M, Schwarz R, Silva A, Sterr U, Tamm C, Targat R L, Tuckey P, Vallet G, Waterholter T, Xu D, and Wolf P 2020 New J. Phys. 22 093010 doi: 10.1088/1367-2630/abaace[12] Williams P A, Swann W C, and Newbury N R 2008 J. Opt. Soc. Am. B 25 1284 doi: 10.1364/JOSAB.25.001284[13] Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, and Santarelli G 2012 Opt. Express 20 23518 doi: 10.1364/OE.20.023518[14] Droste S, Ozimek F, Udem T W, Predehl K, Hänsch T, Schnatz H, Grosche G, and Holzwarth R 2013 Phys. Rev. Lett. 111 110801 doi: 10.1103/PhysRevLett.111.110801[15] Calonico D, Bertacco E K, Calosso C E, Clivati C, Costanzo G A, Frittelli M, Godone A, Mura A, Poli N, Sutyrin D V et al.. 2014 Appl. Phys. B 117 979 doi: 10.1007/s00340-014-5917-8[16] Chiodo N, Quintin N, Stefani F, Wiotte F, Camisard E, Chardonnet C, Santarelli G, Amy-Klein A, Pottie P E, and Lopez O 2015 Opt. Express 23 33927 doi: 10.1364/OE.23.033927[17] Deng X, Liu J, Jiao D D, Gao J, Zang Q, Xu G J, Dong R F, Liu T, and Zhang S G 2016 Chin. Phys. Lett. 33 114202 doi: 10.1088/0256-307X/33/11/114202[18] Wu L, Jiang Y, Ma C, Yu H, Bi Z, and Ma L 2016 Opt. Lett. 41 4368 doi: 10.1364/OL.41.004368[19] Feng Z, Zhang X, Wu R, Sun Y, Wei F, Yang F, Gui Y, and Cai H 2019 Photon. Res. 13 1 doi: 10.1038/s41566-018-0288-z[20] Hu L, Tian X, Wu G, and Chen J 2020 Opt. Lett. 45 4308 doi: 10.1364/OL.393010[21] Husmann D, Bernier L G, Bertrand M, Calonico D, Chaloulos K, Clausen G, Clivati C, Faist J, Heiri E, Hollenstein U, Johnson A, Mauchle F, Meir Z, Merkt F, Mura A, Scalari G, Scheidegger S, Schmutz H, Sinhal M, Willitsch S, and Morel J 2021 Opt. Express 29 24592 doi: 10.1364/OE.427921[22] Ma L S, Jungner P, Ye J, and Hall J L 1994 Opt. Lett. 19 1777 doi: 10.1364/OL.19.001777[23] Clivati C, Tampellini A, Mura A, Levi F, Marra G, Galea P, Xuereb A, and Calonico D 2018 Optica 5 893 doi: 10.1364/OPTICA.5.000893[24] Cantin E, Tønnes M, Targat R L, Amy-Klein A, Lopez O, and Pottie P E 2021 New J. Phys. 23 053027 doi: 10.1088/1367-2630/abe79e[25] Gozzard D R, Schediwy S W, Wallace B, Gamatham R, and Grainge K 2017 Opt. Lett. 42 2197 doi: 10.1364/OL.42.002197[26] Zhang X, Hu L, Deng X, Zang Q, Liu J, Wang D, Liu T, Dong R, and Zhang S 2021 arXiv:2106.12897 [physics.ins-det][27] Walls C F M L F, Clements A, and Vanek M 1990 National Institute of Standards and Technology NIST Technical Note 1337[28] Raupach S M, Koczwara A, and Grosche G 2014 Opt. Express 22 26537 doi: 10.1364/OE.22.026537[29] Lopez O, Haboucha A, Kéfélian F, Jiang H, Chanteau B, Roncin V, Chardonnet C, Amy-Klein A, and Santarelli G 2010 Opt. Express 18 16849 doi: 10.1364/OE.18.016849[30] Akatsuka T, Goh T, Imai H, Oguri K, Ishizawa A, Ushijima I, Ohmae N, Takamoto M, Katori H, Hashimoto T et al.. 2020 Opt. Express 28 9186 doi: 10.1364/OE.383526[31] Fujieda M, Kumagai M, and Nagano S 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 168 doi: 10.1109/TUFFC.2010.1394[32] Jiao D, Gao J, Deng X, Xu G, Liu J, Liu T, Dong R, and Zhang S 2020 Opt. Commun. 463 125460 doi: 10.1016/j.optcom.2020.125460 -
Related Articles
[1] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2012, 29(2): 028501. doi: 10.1088/0256-307X/29/2/028501 [2] MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei. Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric [J]. Chin. Phys. Lett., 2010, 27(12): 128501. doi: 10.1088/0256-307X/27/12/128501 [3] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1 [J]. Chin. Phys. Lett., 2009, 26(5): 053101. doi: 10.1088/0256-307X/26/5/053101 [4] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation [J]. Chin. Phys. Lett., 2008, 25(11): 3954-3956. [5] YUE Yuan-Zheng, HAO Yue, FENG Qian, ZHANG Jin-Cheng, MA Xiao-Hua, NI Jin-Yu. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2007, 24(8): 2419-2422. [6] SHI Li-Bin, ZHENG Yan, REN Jun-Yuan, LI Ming-Biao, ZHANG Feng-Yun, LI Bo-Xin, DONG Hai-Kuan. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique [J]. Chin. Phys. Lett., 2007, 24(6): 1713-1716. [7] ZHOU Sheng-Qiang, WU Ming-Fang, YAO Shu-De, WANG Li, JIANG Feng-Yi. Structural, Morphology and Optical Properties of Epitaxial ZnO Films Grown on Al2O3 by MOCVD [J]. Chin. Phys. Lett., 2006, 23(4): 1023-1025. [8] XU Min, LU Hong-Liang, DING Shi-Jin, SUN Liang, ZHANG Wei, WANG Li-Kang. Effect of Trimethyl Aluminium Surface Pretreatment on Atomic Layer Deposition Al2O3 Ultra-Thin Film on Si Substrate [J]. Chin. Phys. Lett., 2005, 22(9): 2418-2421. [9] ZHAO Bai-Jun, YANG Hong-Jun, DU Guo-Tong, MIAO Guo-Qing, YANG Tian-Peng, ZHANG Yuan-Tao, GAO Zhong-Min, WANG Jin-Zhong, FANG Xiu-Jun, LIU Da-Li, LI Wan-Cheng, MA Yan, YANG Xiao-Tian, LIU Bo-Yang. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2003, 20(11): 2045-2048. [10] LI Cheng-Ren, SONG Chang-Lie, LI Shu-Feng, RAO Wen-Xiong. Deposition of Er:Al2O3 Films and Photoluminescence Characteristics [J]. Chin. Phys. Lett., 2003, 20(9): 1613-1615.