Express Letter

Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Microscopic Level

  • Received Date: December 28, 2021
  • Published Date: February 28, 2022
  • Hydrophobic interactions have been studied before in detail based on hydrophobic polymers, such as polystyrene (PS). Because fluorinated materials have relatively low surface energy, they often show both oleophobicity and hydrophobicity at the macroscopic level. However, it remains unknown how fluorination of hydrophobic polymer influences hydrophobicity at the microscopic level. We synthesized PS and fluorine-substituted PS (FPS) by employing the reversible addition-fragmentation chain transfer polymerization method. Contact angle measurements confirmed that FPS is more hydrophobic than PS at the macroscopic level due to the introduction of fluorine. However, single molecule force spectroscopy experiments showed that the forces required to unfold the PS and FPS nanoparticles in water are indistinguishable, indicating that the strength of the hydrophobic effect that drives the self-assembly of PS and FPS nanoparticles is the same at the microscopic level. The divergence of hydrophobic effect at the macroscopic and microscopic level may hint different underlying mechanisms: the hydrophobicity is dominated by the solvent hydration at the microscopic level and the surface-associated interaction at the macroscopic level.
  • Article Text

  • [1]
    Koldewey P, Stull F, Horowitz S, Martin R, and Bardwell J C A 2016 Cell 166 369 doi: 10.1016/j.cell.2016.05.054

    CrossRef Google Scholar

    [2]
    Kumar A, Singh N K, Ghosh D, and Radhakrishna M 2021 Phys. Chem. Chem. Phys. 23 12620 doi: 10.1039/D1CP00954K

    CrossRef Google Scholar

    [3]
    Berne B J, Weeks J D, and Zhou R 2009 Annu. Rev. Phys. Chem. 60 85 doi: 10.1146/annurev.physchem.58.032806.104445

    CrossRef Google Scholar

    [4]
    Jamadagni S N, Godawat R, and Garde S 2011 Annu. Rev. Chem. Biomol. Eng. 2 147 doi: 10.1146/annurev-chembioeng-061010-114156

    CrossRef Google Scholar

    [5]
    Santos L A, da C E F F, Freitas M P, and Ramalho T C 2014 J. Phys. Chem. A 118 5808 doi: 10.1021/jp411230w

    CrossRef Google Scholar

    [6]
    Jiong S and Xu H 2021 Acta Polymer. Sin. 52 857 in Chinese doi: 10.11777/j.issn1000-3304.2021.21058

    CrossRef Google Scholar

    [7]
    Milovanovic D, Honigmann A, Koike S, Göttfert F et al.. 2015 Nat. Commun. 6 5984 doi: 10.1038/ncomms6984

    CrossRef Google Scholar

    [8]
    Baldwin R L and Rose G D 2016 Proc. Natl. Acad. Sci. USA 113 12462 doi: 10.1073/pnas.1610541113

    CrossRef Google Scholar

    [9]
    Durell S R and Ben-Naim A 2017 Biopolymers 107 e23020 doi: 10.1002/bip.23020

    CrossRef Google Scholar

    [10]
    Gunasekara R W and Zhao Y 2017 Org. Lett. 19 4159 doi: 10.1021/acs.orglett.7b01535

    CrossRef Google Scholar

    [11]
    Wong C K, Mason A F, Stenzel M H, and Thordarson P 2017 Nat. Commun. 8 1240 doi: 10.1038/s41467-017-01372-z

    CrossRef Google Scholar

    [12]
    Sun Q, Wang W, and Cui S 2021 Chem. Phys. 547 111200 doi: 10.1016/j.chemphys.2021.111200

    CrossRef Google Scholar

    [13]
    Lum K, Chandler D, and Weeks J D 1999 J. Phys. Chem. B 103 4570 doi: 10.1021/jp984327m

    CrossRef Google Scholar

    [14]
    Chandler D 2005 Nature 437 640 doi: 10.1038/nature04162

    CrossRef Google Scholar

    [15]
    Hummer G, Garde S, Garcı́a A E, and Pratt L R 2000 Chem. Phys. 258 349 doi: 10.1016/S0301-01040000115-4

    CrossRef Google Scholar

    [16]
    Rajamani S, Truskett T M, and Garde S 2005 Proc. Natl. Acad. Sci. USA 102 9475 doi: 10.1073/pnas.0504089102

    CrossRef Google Scholar

    [17]
    Xue Y, Li X, Li H, and Zhang W 2014 Nat. Commun. 5 4348 doi: 10.1038/ncomms5348

    CrossRef Google Scholar

    [18]
    Cai W, Xu D, Qian L, Wei J, Xiao C, Qian L, Lu Z Y, and Cui S 2019 J. Am. Chem. Soc. 141 9500 doi: 10.1021/jacs.9b03490

    CrossRef Google Scholar

    [19]
    Li Y, Cheng J, Delparastan P, Wang H, Sigg S J, DeFrates K G, Cao Y, and Messersmith P B 2020 Nat. Commun. 11 3895 doi: 10.1038/s41467-020-17597-4

    CrossRef Google Scholar

    [20]
    Tian Y, Cao X, Li X et al.. 2020 J. Am. Chem. Soc. 142 18687 doi: 10.1021/jacs.0c09220

    CrossRef Google Scholar

    [21]
    Xiao X, Liu C, Pei Y et al.. 2020 J. Am. Chem. Soc. 142 3340 doi: 10.1021/jacs.9b12448

    CrossRef Google Scholar

    [22]
    Cai W, Xu D, Zhang F, Wei J, Lu S, Qian L, Lu Z Y, and Cui S 2022 Nano Res. 15 1517 doi: 10.1007/s12274-021-3696-1

    CrossRef Google Scholar

    [23]
    Guo Z, Hong H, Sun H, Zhang X, Wu C X, Li B, Cao Y, and Chen H 2021 Nanoscale 13 11262 doi: 10.1039/D1NR01907D

    CrossRef Google Scholar

    [24]
    Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, and Cao Y 2021 Nat. Commun. 12 5082 doi: 10.1038/s41467-021-25425-6

    CrossRef Google Scholar

    [25]
    Zhang J, Wong S H D, Wu X, Lei H, Qin M, Shi P, Wang W, Bian L, and Cao Y 2021 Adv. Mater. 33 2105765 doi: 10.1002/adma.202105765

    CrossRef Google Scholar

    [26]
    Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, and Chen H 2020 Phys. Rev. Lett. 125 198101 doi: 10.1103/PhysRevLett.125.198101

    CrossRef Google Scholar

    [27]
    Xing H, Li Z D, Wang W B, Liu P R, Liu J K, Song Y, Wu Z L, Zhang W K, and Huang F H 2019 CCS Chem. 1 513 doi: 10.31635/ccschem.019.20190043

    CrossRef Google Scholar

    [28]
    Shi S C, Wang Z Y, Deng Y B, Tian F, Wu Q S, and Zheng P 2021 CCS Chem. 3 841 doi: 10.31635/ccschem.021.202100779

    CrossRef Google Scholar

    [29]
    Zhang J, Lei H, Qin M, Wang W, and Cao Y 2022 Supramolecular Mater. 1 100005 doi: 10.1016/j.supmat.2021.100005

    CrossRef Google Scholar

    [30]
    Li I T S and Walker G C 2010 J. Am. Chem. Soc. 132 6530 doi: 10.1021/ja101155h

    CrossRef Google Scholar

    [31]
    Li I T S and Walker G C 2011 Proc. Natl. Acad. Sci. USA 108 16527 doi: 10.1073/pnas.1105450108

    CrossRef Google Scholar

    [32]
    Li I T S and Walker G C 2012 Acc. Chem. Res. 45 2011 doi: 10.1021/ar200285h

    CrossRef Google Scholar

    [33]
    Mondal J, Halverson D, Li I T S, Stirnemann G, Walker G C, and Berne B J 2015 Proc. Natl. Acad. Sci. USA 112 9270 doi: 10.1073/pnas.1511780112

    CrossRef Google Scholar

    [34]
    Di W, Gao X, Huang W et al.. 2019 Phys. Rev. Lett. 122 047801 doi: 10.1103/PhysRevLett.122.047801

    CrossRef Google Scholar

    [35]
    Faghihnejad A and Zeng H 2012 Soft Matter 8 2746 doi: 10.1039/c2sm07150a

    CrossRef Google Scholar

    [36]
    Cui X, Shi C, Xie L, Liu J, and Zeng H 2016 Langmuir 32 11236 doi: 10.1021/acs.langmuir.6b01674

    CrossRef Google Scholar

    [37]
    Parker J L, Claesson P M, and Attard P 1994 J. Phys. Chem. 98 8468 doi: 10.1021/j100085a029

    CrossRef Google Scholar

    [38]
    Meyer E E, Rosenberg K J, and Israelachvili J 2006 Proc. Natl. Acad. Sci. USA 103 15739 doi: 10.1073/pnas.0606422103

    CrossRef Google Scholar

    [39]
    Xie L, Cui X, Gong L, Chen J, and Zeng H 2020 Langmuir 36 2985 doi: 10.1021/acs.langmuir.9b03573

    CrossRef Google Scholar

    [40]
    Pan Y, Huang S, Li F, Zhao X, and Wang W 2018 J. Mater. Chem. A 6 15057 doi: 10.1039/C8TA04725A

    CrossRef Google Scholar

    [41]
    Xin-Wei W, Yong-Xin S, and Hao W 2012 Chin. Phys. Lett. 29 114702 doi: 10.1088/0256-307X/29/11/114702

    CrossRef Google Scholar

    [42]
    Ahmad D, van den Boogaert I, Miller J, Presswell R, and Jouhara H 2018 Energy Sources Part. A: Recovery Utilization Environ. Eff. 40 2686

    Google Scholar

    [43]
    Cai Y, Li J, Yi L, Yan X, and Li J 2018 Appl. Surf. Sci. 450 102 doi: 10.1016/j.apsusc.2018.04.186

    CrossRef Google Scholar

    [44]
    Salam A, Lucia L A, and Jameel H 2015 Cellulose 22 397 doi: 10.1007/s10570-014-0507-9

    CrossRef Google Scholar

    [45]
    Li-Xing L, Yuan D, and Yao W 2013 Chin. Phys. Lett. 30 108104 doi: 10.1088/0256-307X/30/10/108104

    CrossRef Google Scholar

    [46]
    Boban M, Golovin K, Tobelmann B, Gupte O, Mabry J M, and Tuteja A 2018 ACS Appl. Mater. & Interfaces 10 11406 doi: 10.1021/acsami.8b00521

    CrossRef Google Scholar

    [47]
    Chen J F, Xiao W J, Li D, Yang Y Y, and He Z H 2008 Chin. Phys. Lett. 25 747 doi: 10.1088/0256-307X/25/2/107

    CrossRef Google Scholar

    [48]
    Wang Y and Gong X 2017 J. Mater. Chem. A 5 3759 doi: 10.1039/C6TA10474F

    CrossRef Google Scholar

    [49]
    Hare E F, Shafrin E G, and Zisman W A 1954 J. Phys. Chem. 58 236 doi: 10.1021/j150513a011

    CrossRef Google Scholar

    [50]
    Nishino T, Meguro M, Nakamae K, Matsushita M, and Ueda Y 1999 Langmuir 15 4321 doi: 10.1021/la981727s

    CrossRef Google Scholar

    [51]
    Gattás-Asfura K M and Stabler C L 2009 Biomacromolecules 10 3122 doi: 10.1021/bm900789a

    CrossRef Google Scholar

    [52]
    Lansalot M, Davis T P, and Heuts J P A 2002 Macromolecules 35 7582 doi: 10.1021/ma012214m

    CrossRef Google Scholar

    [53]
    Puts G, Venner V, Améduri B, and Crouse P 2018 Macromolecules 51 6724 doi: 10.1021/acs.macromol.8b01286

    CrossRef Google Scholar

    [54]
    Köhn M and Breinbauer R 2004 Angew. Chem. Int. Ed. 43 3106 doi: 10.1002/anie.200401744

    CrossRef Google Scholar

    [55]
    Liu S and Edgar K J 2015 Biomacromolecules 16 2556 doi: 10.1021/acs.biomac.5b00855

    CrossRef Google Scholar

    [56]
    Marko J F and Siggia E D 1995 Macromolecules 28 8759 doi: 10.1021/ma00130a008

    CrossRef Google Scholar

    [57]
    Bao Y, Luo Z, and Cui S 2020 Chem. Soc. Rev. 49 2799 doi: 10.1039/C9CS00855A

    CrossRef Google Scholar

    [58]
    Lin J W P, Dudek L P, and Majumdar D 1987 J. Appl. Polym. Sci. 33 657 doi: 10.1002/app.1987.070330227

    CrossRef Google Scholar

    [59]
    Huang X, Zhou R, and Berne B J 2005 J. Phys. Chem. B 109 3546 doi: 10.1021/jp045520l

    CrossRef Google Scholar

    [60]
    Wallqvist A, Gallicchio E, and Levy R M 2001 J. Phys. Chem. B 105 6745 doi: 10.1021/jp010945i

    CrossRef Google Scholar

    [61]
    Huang D M and Chandler D 2002 J. Phys. Chem. B 106 2047 doi: 10.1021/jp013289v

    CrossRef Google Scholar

    [62]
    Mittal J and Hummer G 2008 Proc. Natl. Acad. Sci. USA 105 20130 doi: 10.1073/pnas.0809029105

    CrossRef Google Scholar

  • Related Articles

    [1]BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2012, 29(2): 028501. doi: 10.1088/0256-307X/29/2/028501
    [2]MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei. Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric [J]. Chin. Phys. Lett., 2010, 27(12): 128501. doi: 10.1088/0256-307X/27/12/128501
    [3]SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1 [J]. Chin. Phys. Lett., 2009, 26(5): 053101. doi: 10.1088/0256-307X/26/5/053101
    [4]SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation [J]. Chin. Phys. Lett., 2008, 25(11): 3954-3956.
    [5]YUE Yuan-Zheng, HAO Yue, FENG Qian, ZHANG Jin-Cheng, MA Xiao-Hua, NI Jin-Yu. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2007, 24(8): 2419-2422.
    [6]SHI Li-Bin, ZHENG Yan, REN Jun-Yuan, LI Ming-Biao, ZHANG Feng-Yun, LI Bo-Xin, DONG Hai-Kuan. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique [J]. Chin. Phys. Lett., 2007, 24(6): 1713-1716.
    [7]ZHOU Sheng-Qiang, WU Ming-Fang, YAO Shu-De, WANG Li, JIANG Feng-Yi. Structural, Morphology and Optical Properties of Epitaxial ZnO Films Grown on Al2O3 by MOCVD [J]. Chin. Phys. Lett., 2006, 23(4): 1023-1025.
    [8]XU Min, LU Hong-Liang, DING Shi-Jin, SUN Liang, ZHANG Wei, WANG Li-Kang. Effect of Trimethyl Aluminium Surface Pretreatment on Atomic Layer Deposition Al2O3 Ultra-Thin Film on Si Substrate [J]. Chin. Phys. Lett., 2005, 22(9): 2418-2421.
    [9]ZHAO Bai-Jun, YANG Hong-Jun, DU Guo-Tong, MIAO Guo-Qing, YANG Tian-Peng, ZHANG Yuan-Tao, GAO Zhong-Min, WANG Jin-Zhong, FANG Xiu-Jun, LIU Da-Li, LI Wan-Cheng, MA Yan, YANG Xiao-Tian, LIU Bo-Yang. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2003, 20(11): 2045-2048.
    [10]LI Cheng-Ren, SONG Chang-Lie, LI Shu-Feng, RAO Wen-Xiong. Deposition of Er:Al2O3 Films and Photoluminescence Characteristics [J]. Chin. Phys. Lett., 2003, 20(9): 1613-1615.
  • Other Related Supplements

Catalog

    Article views (433) PDF downloads (571) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return