Express Letter
Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Microscopic Level
-
Abstract
Hydrophobic interactions have been studied before in detail based on hydrophobic polymers, such as polystyrene (PS). Because fluorinated materials have relatively low surface energy, they often show both oleophobicity and hydrophobicity at the macroscopic level. However, it remains unknown how fluorination of hydrophobic polymer influences hydrophobicity at the microscopic level. We synthesized PS and fluorine-substituted PS (FPS) by employing the reversible addition-fragmentation chain transfer polymerization method. Contact angle measurements confirmed that FPS is more hydrophobic than PS at the macroscopic level due to the introduction of fluorine. However, single molecule force spectroscopy experiments showed that the forces required to unfold the PS and FPS nanoparticles in water are indistinguishable, indicating that the strength of the hydrophobic effect that drives the self-assembly of PS and FPS nanoparticles is the same at the microscopic level. The divergence of hydrophobic effect at the macroscopic and microscopic level may hint different underlying mechanisms: the hydrophobicity is dominated by the solvent hydration at the microscopic level and the surface-associated interaction at the macroscopic level. -
-
References
[1] Koldewey P, Stull F, Horowitz S, Martin R, and Bardwell J C A 2016 Cell 166 369 doi: 10.1016/j.cell.2016.05.054[2] Kumar A, Singh N K, Ghosh D, and Radhakrishna M 2021 Phys. Chem. Chem. Phys. 23 12620 doi: 10.1039/D1CP00954K[3] Berne B J, Weeks J D, and Zhou R 2009 Annu. Rev. Phys. Chem. 60 85 doi: 10.1146/annurev.physchem.58.032806.104445[4] Jamadagni S N, Godawat R, and Garde S 2011 Annu. Rev. Chem. Biomol. Eng. 2 147 doi: 10.1146/annurev-chembioeng-061010-114156[5] Santos L A, da C E F F, Freitas M P, and Ramalho T C 2014 J. Phys. Chem. A 118 5808 doi: 10.1021/jp411230w[6] Jiong S and Xu H 2021 Acta Polymer. Sin. 52 857 in Chinese doi: 10.11777/j.issn1000-3304.2021.21058[7] Milovanovic D, Honigmann A, Koike S, Göttfert F et al.. 2015 Nat. Commun. 6 5984 doi: 10.1038/ncomms6984[8] Baldwin R L and Rose G D 2016 Proc. Natl. Acad. Sci. USA 113 12462 doi: 10.1073/pnas.1610541113[9] Durell S R and Ben-Naim A 2017 Biopolymers 107 e23020 doi: 10.1002/bip.23020[10] Gunasekara R W and Zhao Y 2017 Org. Lett. 19 4159 doi: 10.1021/acs.orglett.7b01535[11] Wong C K, Mason A F, Stenzel M H, and Thordarson P 2017 Nat. Commun. 8 1240 doi: 10.1038/s41467-017-01372-z[12] Sun Q, Wang W, and Cui S 2021 Chem. Phys. 547 111200 doi: 10.1016/j.chemphys.2021.111200[13] Lum K, Chandler D, and Weeks J D 1999 J. Phys. Chem. B 103 4570 doi: 10.1021/jp984327m[14] Chandler D 2005 Nature 437 640 doi: 10.1038/nature04162[15] Hummer G, Garde S, Garcı́a A E, and Pratt L R 2000 Chem. Phys. 258 349 doi: 10.1016/S0301-01040000115-4[16] Rajamani S, Truskett T M, and Garde S 2005 Proc. Natl. Acad. Sci. USA 102 9475 doi: 10.1073/pnas.0504089102[17] Xue Y, Li X, Li H, and Zhang W 2014 Nat. Commun. 5 4348 doi: 10.1038/ncomms5348[18] Cai W, Xu D, Qian L, Wei J, Xiao C, Qian L, Lu Z Y, and Cui S 2019 J. Am. Chem. Soc. 141 9500 doi: 10.1021/jacs.9b03490[19] Li Y, Cheng J, Delparastan P, Wang H, Sigg S J, DeFrates K G, Cao Y, and Messersmith P B 2020 Nat. Commun. 11 3895 doi: 10.1038/s41467-020-17597-4[20] Tian Y, Cao X, Li X et al.. 2020 J. Am. Chem. Soc. 142 18687 doi: 10.1021/jacs.0c09220[21] Xiao X, Liu C, Pei Y et al.. 2020 J. Am. Chem. Soc. 142 3340 doi: 10.1021/jacs.9b12448[22] Cai W, Xu D, Zhang F, Wei J, Lu S, Qian L, Lu Z Y, and Cui S 2022 Nano Res. 15 1517 doi: 10.1007/s12274-021-3696-1[23] Guo Z, Hong H, Sun H, Zhang X, Wu C X, Li B, Cao Y, and Chen H 2021 Nanoscale 13 11262 doi: 10.1039/D1NR01907D[24] Lei H, Ma Q, Li W, Wen J, Ma H, Qin M, Wang W, and Cao Y 2021 Nat. Commun. 12 5082 doi: 10.1038/s41467-021-25425-6[25] Zhang J, Wong S H D, Wu X, Lei H, Qin M, Shi P, Wang W, Bian L, and Cao Y 2021 Adv. Mater. 33 2105765 doi: 10.1002/adma.202105765[26] Guo Z, Hong H, Yuan G, Qian H, Li B, Cao Y, Wang W, Wu C X, and Chen H 2020 Phys. Rev. Lett. 125 198101 doi: 10.1103/PhysRevLett.125.198101[27] Xing H, Li Z D, Wang W B, Liu P R, Liu J K, Song Y, Wu Z L, Zhang W K, and Huang F H 2019 CCS Chem. 1 513 doi: 10.31635/ccschem.019.20190043[28] Shi S C, Wang Z Y, Deng Y B, Tian F, Wu Q S, and Zheng P 2021 CCS Chem. 3 841 doi: 10.31635/ccschem.021.202100779[29] Zhang J, Lei H, Qin M, Wang W, and Cao Y 2022 Supramolecular Mater. 1 100005 doi: 10.1016/j.supmat.2021.100005[30] Li I T S and Walker G C 2010 J. Am. Chem. Soc. 132 6530 doi: 10.1021/ja101155h[31] Li I T S and Walker G C 2011 Proc. Natl. Acad. Sci. USA 108 16527 doi: 10.1073/pnas.1105450108[32] Li I T S and Walker G C 2012 Acc. Chem. Res. 45 2011 doi: 10.1021/ar200285h[33] Mondal J, Halverson D, Li I T S, Stirnemann G, Walker G C, and Berne B J 2015 Proc. Natl. Acad. Sci. USA 112 9270 doi: 10.1073/pnas.1511780112[34] Di W, Gao X, Huang W et al.. 2019 Phys. Rev. Lett. 122 047801 doi: 10.1103/PhysRevLett.122.047801[35] Faghihnejad A and Zeng H 2012 Soft Matter 8 2746 doi: 10.1039/c2sm07150a[36] Cui X, Shi C, Xie L, Liu J, and Zeng H 2016 Langmuir 32 11236 doi: 10.1021/acs.langmuir.6b01674[37] Parker J L, Claesson P M, and Attard P 1994 J. Phys. Chem. 98 8468 doi: 10.1021/j100085a029[38] Meyer E E, Rosenberg K J, and Israelachvili J 2006 Proc. Natl. Acad. Sci. USA 103 15739 doi: 10.1073/pnas.0606422103[39] Xie L, Cui X, Gong L, Chen J, and Zeng H 2020 Langmuir 36 2985 doi: 10.1021/acs.langmuir.9b03573[40] Pan Y, Huang S, Li F, Zhao X, and Wang W 2018 J. Mater. Chem. A 6 15057 doi: 10.1039/C8TA04725A[41] Xin-Wei W, Yong-Xin S, and Hao W 2012 Chin. Phys. Lett. 29 114702 doi: 10.1088/0256-307X/29/11/114702[42] Ahmad D, van den Boogaert I, Miller J, Presswell R, and Jouhara H 2018 Energy Sources Part. A: Recovery Utilization Environ. Eff. 40 2686[43] Cai Y, Li J, Yi L, Yan X, and Li J 2018 Appl. Surf. Sci. 450 102 doi: 10.1016/j.apsusc.2018.04.186[44] Salam A, Lucia L A, and Jameel H 2015 Cellulose 22 397 doi: 10.1007/s10570-014-0507-9[45] Li-Xing L, Yuan D, and Yao W 2013 Chin. Phys. Lett. 30 108104 doi: 10.1088/0256-307X/30/10/108104[46] Boban M, Golovin K, Tobelmann B, Gupte O, Mabry J M, and Tuteja A 2018 ACS Appl. Mater. & Interfaces 10 11406 doi: 10.1021/acsami.8b00521[47] Chen J F, Xiao W J, Li D, Yang Y Y, and He Z H 2008 Chin. Phys. Lett. 25 747 doi: 10.1088/0256-307X/25/2/107[48] Wang Y and Gong X 2017 J. Mater. Chem. A 5 3759 doi: 10.1039/C6TA10474F[49] Hare E F, Shafrin E G, and Zisman W A 1954 J. Phys. Chem. 58 236 doi: 10.1021/j150513a011[50] Nishino T, Meguro M, Nakamae K, Matsushita M, and Ueda Y 1999 Langmuir 15 4321 doi: 10.1021/la981727s[51] Gattás-Asfura K M and Stabler C L 2009 Biomacromolecules 10 3122 doi: 10.1021/bm900789a[52] Lansalot M, Davis T P, and Heuts J P A 2002 Macromolecules 35 7582 doi: 10.1021/ma012214m[53] Puts G, Venner V, Améduri B, and Crouse P 2018 Macromolecules 51 6724 doi: 10.1021/acs.macromol.8b01286[54] Köhn M and Breinbauer R 2004 Angew. Chem. Int. Ed. 43 3106 doi: 10.1002/anie.200401744[55] Liu S and Edgar K J 2015 Biomacromolecules 16 2556 doi: 10.1021/acs.biomac.5b00855[56] Marko J F and Siggia E D 1995 Macromolecules 28 8759 doi: 10.1021/ma00130a008[57] Bao Y, Luo Z, and Cui S 2020 Chem. Soc. Rev. 49 2799 doi: 10.1039/C9CS00855A[58] Lin J W P, Dudek L P, and Majumdar D 1987 J. Appl. Polym. Sci. 33 657 doi: 10.1002/app.1987.070330227[59] Huang X, Zhou R, and Berne B J 2005 J. Phys. Chem. B 109 3546 doi: 10.1021/jp045520l[60] Wallqvist A, Gallicchio E, and Levy R M 2001 J. Phys. Chem. B 105 6745 doi: 10.1021/jp010945i[61] Huang D M and Chandler D 2002 J. Phys. Chem. B 106 2047 doi: 10.1021/jp013289v[62] Mittal J and Hummer G 2008 Proc. Natl. Acad. Sci. USA 105 20130 doi: 10.1073/pnas.0809029105 -
Related Articles
[1] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2012, 29(2): 028501. doi: 10.1088/0256-307X/29/2/028501 [2] MAO Wei, ZHANG Jin-Cheng, XUE Jun-Shuai, HAO Yao, MA Xiao-Hua, WANG Chong, LIU Hong-Xia, XU Sheng-Rui, YANG Lin-An, BI Zhi-Wei, LIANG Xiao-Zhen, ZHANG Jin-Feng, KUANG Xian-Wei. Fabrication and Characteristics of AlInN/AlN/GaN MOS-HEMTs with Ultra-Thin Atomic Layer Deposited Al2O3 Gate Dielectric [J]. Chin. Phys. Lett., 2010, 27(12): 128501. doi: 10.1088/0256-307X/27/12/128501 [3] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Atomic Layer Deposition of Al2O3 on H-Passivated GeSi: Initial Surface Reaction Pathways with H/GeSi(100)-2×1 [J]. Chin. Phys. Lett., 2009, 26(5): 053101. doi: 10.1088/0256-307X/26/5/053101 [4] SHI Yu, SUN Qing-Qing, DONG Lin, LIU Han, DING Shi-Jin, ZHANG Wei. Improvement of Atomic-Layer-Deposited Al2O3/GaAs Interface Property by Sulfuration and NH3 Thermal Nitridation [J]. Chin. Phys. Lett., 2008, 25(11): 3954-3956. [5] YUE Yuan-Zheng, HAO Yue, FENG Qian, ZHANG Jin-Cheng, MA Xiao-Hua, NI Jin-Yu. GaN MOS-HEMT Using Ultra-Thin Al2O3 Dielectric Grown by Atomic Layer Deposition [J]. Chin. Phys. Lett., 2007, 24(8): 2419-2422. [6] SHI Li-Bin, ZHENG Yan, REN Jun-Yuan, LI Ming-Biao, ZHANG Feng-Yun, LI Bo-Xin, DONG Hai-Kuan. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique [J]. Chin. Phys. Lett., 2007, 24(6): 1713-1716. [7] ZHOU Sheng-Qiang, WU Ming-Fang, YAO Shu-De, WANG Li, JIANG Feng-Yi. Structural, Morphology and Optical Properties of Epitaxial ZnO Films Grown on Al2O3 by MOCVD [J]. Chin. Phys. Lett., 2006, 23(4): 1023-1025. [8] XU Min, LU Hong-Liang, DING Shi-Jin, SUN Liang, ZHANG Wei, WANG Li-Kang. Effect of Trimethyl Aluminium Surface Pretreatment on Atomic Layer Deposition Al2O3 Ultra-Thin Film on Si Substrate [J]. Chin. Phys. Lett., 2005, 22(9): 2418-2421. [9] ZHAO Bai-Jun, YANG Hong-Jun, DU Guo-Tong, MIAO Guo-Qing, YANG Tian-Peng, ZHANG Yuan-Tao, GAO Zhong-Min, WANG Jin-Zhong, FANG Xiu-Jun, LIU Da-Li, LI Wan-Cheng, MA Yan, YANG Xiao-Tian, LIU Bo-Yang. Comparative Study of Properties of ZnO/GaN/Al2O3 and ZnO/Al2O3 Films Grown by Low-Pressure Metal Organic Chemical Vapour Deposition [J]. Chin. Phys. Lett., 2003, 20(11): 2045-2048. [10] LI Cheng-Ren, SONG Chang-Lie, LI Shu-Feng, RAO Wen-Xiong. Deposition of Er:Al2O3 Films and Photoluminescence Characteristics [J]. Chin. Phys. Lett., 2003, 20(9): 1613-1615. -
Supplements
Other Related Supplements
-
Cover image
176KB
-