Express Letter

Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2020YFA0309500), the Key-Area Research and Development Program of Guangdong Province (Grant No. 2019B030330001), the Key Project of Science and Technology of Guangzhou (Grant No. 2019050001), and the National Natural Science Foundation of China (Grant Nos. 11822403, 62005082, 12004120, U20A2074, and U1801661), the Natural Science Foundation of Guangdong Province (Grant No. 2018A0303130066), the China Postdoctoral Science Foundation (Grant No. 2020M672681), and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515110848).
  • Received Date: July 21, 2021
  • Published Date: August 31, 2021
  • Time synchronization and phase shaping of single photons both play fundamental roles in quantum information applications that rely on multi-photon quantum interference. Phase shaping typically requires separate modulators with extra insertion losses. Here, we develop an all-optical built-in phase modulator for single photons using a quantum memory. The fast phase modulation of a single photon in both step and linear manner are verified by observing the efficient quantum-memory-assisted Hong–Ou–Mandel interference between two single photons, where the anti-coalescence effect of bosonic photon pairs is demonstrated. The developed phase modulator may push forward the practical quantum information applications.
  • Article Text

  • [1]
    Hong C K, Ou Z Y, and Mandel L 1987 Phys. Rev. Lett. 59 2044 doi: 10.1103/PhysRevLett.59.2044

    CrossRef Google Scholar

    [2]
    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, and Milburn G J 2007 Rev. Mod. Phys. 79 135 doi: 10.1103/RevModPhys.79.135

    CrossRef Google Scholar

    [3]
    Duan L M, Lukin M D, Cirac J I, and Zoller P 2001 Nature 414 413 doi: 10.1038/35106500

    CrossRef Google Scholar

    [4]
    Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33 doi: 10.1103/RevModPhys.83.33

    CrossRef Google Scholar

    [5]
    Kimble H J 2008 Nature 453 1023 doi: 10.1038/nature07127

    CrossRef Google Scholar

    [6]
    Wehner S, Elkouss D, and Hanson R 2018 Science 362 eaam9288 doi: 10.1126/science.aam9288

    CrossRef Google Scholar

    [7]
    Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Park H, Englund D, Lončar M, Sukachev D D, and Lukin M D 2020 Nature 580 60 doi: 10.1038/s41586-020-2103-5

    CrossRef Google Scholar

    [8]
    Inoue K, Waks E, and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902 doi: 10.1103/PhysRevLett.89.037902

    CrossRef Google Scholar

    [9]
    Marcikic I, de Riedmatten H, Tittel W, Zbinden H, Legré M, and Gisin N 2004 Phys. Rev. Lett. 93 180502 doi: 10.1103/PhysRevLett.93.180502

    CrossRef Google Scholar

    [10]
    Raymer M G and Walmsley I A 2020 Phys. Scr. 95 064002 doi: 10.1088/1402-4896/ab6153

    CrossRef Google Scholar

    [11]
    Specht H P, Bochmann J, Mücke M, Weber B, Figueroa E, Moehring D L, and Rempe G 2009 Nat. Photon. 3 469 doi: 10.1038/nphoton.2009.115

    CrossRef Google Scholar

    [12]
    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, and Żukowski M 2012 Rev. Mod. Phys. 84 777 doi: 10.1103/RevModPhys.84.777

    CrossRef Google Scholar

    [13]
    Qian P, Gu Z, Cao R, Wen R, Ou Z Y, Chen J F, and Zhang W 2016 Phys. Rev. Lett. 117 013602 doi: 10.1103/PhysRevLett.117.013602

    CrossRef Google Scholar

    [14]
    Liu S, Lai X, Yang C, and Chen J F 2021 Chin. Phys. Lett. 38 084201 doi: 10.1088/0256-307X/38/8/084201

    CrossRef Google Scholar

    [15]
    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, and Tittel W 2013 J. Mod. Opt. 60 1519 doi: 10.1080/09500340.2013.856482

    CrossRef Google Scholar

    [16]
    Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X M, England D G, and Walmsley I A 2013 Phys. Rev. Lett. 110 133601 doi: 10.1103/PhysRevLett.110.133601

    CrossRef Google Scholar

    [17]
    Kaneda F, Xu F, Chapman J, and Kwiat P G 2017 Optica 4 1034 doi: 10.1364/OPTICA.4.001034

    CrossRef Google Scholar

    [18]
    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, and Pan J W 2019 Nat. Photon. 13 210 doi: 10.1038/s41566-018-0342-x

    CrossRef Google Scholar

    [19]
    Boller K J, Imamoğlu A, and Harris S E 1991 Phys. Rev. Lett. 66 2593 doi: 10.1103/PhysRevLett.66.2593

    CrossRef Google Scholar

    [20]
    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, and Chen Y C 2018 Phys. Rev. Lett. 120 183602 doi: 10.1103/PhysRevLett.120.183602

    CrossRef Google Scholar

    [21]
    Vernaz-Gris P, Huang K, Cao M, Sheremet A S, and Laurat J 2018 Nat. Commun. 9 363 doi: 10.1038/s41467-017-02775-8

    CrossRef Google Scholar

    [22]
    Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, and Zhu S L 2019 Nat. Photon. 13 346 doi: 10.1038/s41566-019-0368-8

    CrossRef Google Scholar

    [23]
    Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, and Walmsley I A 2010 Nat. Photon. 4 218 doi: 10.1038/nphoton.2010.30

    CrossRef Google Scholar

    [24]
    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, and Guo G C 2015 Nat. Photon. 9 332 doi: 10.1038/nphoton.2015.43

    CrossRef Google Scholar

    [25]
    Guo J, Feng X, Yang P, Yu Z, Chen L Q, Yuan C H, and Zhang W 2019 Nat. Commun. 10 148 doi: 10.1038/s41467-018-08118-5

    CrossRef Google Scholar

    [26]
    Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094 doi: 10.1103/PhysRevLett.84.5094

    CrossRef Google Scholar

    [27]
    Patnaik A K, Kien F L, and Hakuta K 2004 Phys. Rev. A 69 035803 doi: 10.1103/PhysRevA.69.035803

    CrossRef Google Scholar

    [28]
    Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y, and Zhang W 2015 Phys. Rev. Lett. 115 043602 doi: 10.1103/PhysRevLett.115.043602

    CrossRef Google Scholar

    [29]
    Qiu C, Chen S, Chen L Q, Chen B, Guo J, Ou Z Y, and Zhang W 2016 Optica 3 775 doi: 10.1364/OPTICA.3.000775

    CrossRef Google Scholar

    [30]
    Guo X, Mei Y, and Du S 2018 Phys. Rev. A 97 063805 doi: 10.1103/PhysRevA.97.063805

    CrossRef Google Scholar

    [31]
    Mair A, Hager J, Phillips D F, Walsworth R L, and Lukin M D 2002 Phys. Rev. A 65 031802 doi: 10.1103/PhysRevA.65.031802

    CrossRef Google Scholar

    [32]
    Lukin M D 2003 Rev. Mod. Phys. 75 457 doi: 10.1103/RevModPhys.75.457

    CrossRef Google Scholar

    [33]
    Jeong T, Park J, and Moon H S 2017 Sci. Rep. 7 15559 doi: 10.1038/s41598-017-15469-4

    CrossRef Google Scholar

    [34]
    Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H, and Zhu S L 2019 Chin. Phys. Lett. 36 074202 doi: 10.1088/0256-307X/36/7/074202

    CrossRef Google Scholar

    [35]
    Legero T, Wilk T, Hennrich M, Rempe G, and Kuhn A 2004 Phys. Rev. Lett. 93 070503 doi: 10.1103/PhysRevLett.93.070503

    CrossRef Google Scholar

    [36]
    Yan H, Zhu S L, and Du S W 2011 Chin. Phys. Lett. 28 070307 doi: 10.1088/0256-307X/28/7/070307

    CrossRef Google Scholar

    [37]
    Knill E, Laflamme R, and Milburn G J 2001 Nature 409 46 doi: 10.1038/35051009

    CrossRef Google Scholar

  • Related Articles

    [1]Yi Cui, Rong Yu, Weiqiang Yu. Deconfined Quantum Critical Point: A Review of Progress [J]. Chin. Phys. Lett., 2025, 42(4): 047503. doi: 10.1088/0256-307X/42/4/047503
    [2]LIU Tao, HUANG Zheng. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode [J]. Chin. Phys. Lett., 2011, 28(10): 107301. doi: 10.1088/0256-307X/28/10/107301
    [3]YAN Hui, ZHU Shi-Liang, DU Sheng-Wang. Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons [J]. Chin. Phys. Lett., 2011, 28(7): 070307. doi: 10.1088/0256-307X/28/7/070307
    [4]DU Gui-Qiang, JIANG Hai-tao, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. High-Efficiency Bistable Switching Based on One-Dimensional Photonic Crystals with Single-Negative Materials [J]. Chin. Phys. Lett., 2008, 25(8): 2900-2903.
    [5]YAN Feng-Li, GAO Ting, LI You-Cheng. Quantum Secret Sharing Protocol between Multiparty and Multiparty with Single Photons and Unitary Transformations [J]. Chin. Phys. Lett., 2008, 25(4): 1187-1190.
    [6]HOU Ping, LI Xi-Han, DENG Fu-Guo, ZHOU Hong-Yu. Efficient Three-Party Quantum Secret Sharing with Single Photons [J]. Chin. Phys. Lett., 2007, 24(8): 2181-2184.
    [7]DUAN Yu, HOU Jing-Ying, WU Zhi-Jun, CHENG Gang, ZHAO Yi, LIU Shi-Yong. High-Efficiency White Organic Light-Emitting Devices Based on Multiple Quantum-Well Structure [J]. Chin. Phys. Lett., 2004, 21(3): 534-536.
    [8]XIE Wen-Fa, LI Chuan-Nan, LIU Shi-Yong. High-Efficiency Organic Double-Quantum-Well Light-Emitting Devices Using 5,6,11,12-Tetraphenylnaphthacene Sub-monolayer as Potential Well [J]. Chin. Phys. Lett., 2003, 20(6): 956-958.
    [9]SUN Xiudong, ZHANG Jingwen, ZHOU Zhongxiang, XU Kebin, HONG Jing, JIANG Quanzhong, CHEN Huanchu, ZHU Guizhi. Coherent Mutually Pumped Phase Conjugation Induced with High-Efficiency by Self-Pumped Phase Conjugate Reflection [J]. Chin. Phys. Lett., 1995, 12(9): 533-536.
    [10]XU Huibin. HYSTERESIS OF PSEUDOELASTICITY IN A SINGLE CRYSTAL WITH SHAPE MEMORY EFFECT [J]. Chin. Phys. Lett., 1990, 7(7): 289-291.
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. Li, H., Lan, Y., Zeng, R. et al. Controllable single-photon transport mediated by a time-modulated Jaynes-Cummings model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2024, 57(6): 065501. DOI:10.1088/1361-6455/ad2e2b
    2. Li, H.-Z., Zeng, R., Hu, M. et al. Dynamic modulated single-photon routing. Chinese Physics B, 2023, 32(12): 124203. DOI:10.1088/1674-1056/acf662
    3. Wang, Y.-F., Zhou, Y., Wang, Y. et al. Performance and application analysis of quantum memory | [量子存储性能及应用分析]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(20): 206701. DOI:10.7498/aps.72.20231203
    4. Davidson, O., Yogev, O., Poem, E. et al. Single-Photon Synchronization with a Room-Temperature Atomic Quantum Memory. Physical Review Letters, 2023, 131(3): 033601. DOI:10.1103/PhysRevLett.131.033601
    5. Li, J.-F., Wang, Y.-F., Huang, P.-S. et al. Nonreciprocity in Cold Atoms Based on Electromagnetically Induced Transparency. Physical Review Applied, 2023, 20(1): 014027. DOI:10.1103/PhysRevApplied.20.014027
    6. Wang, X., Wang, J., Zuo, Y. et al. Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles. Chinese Physics B, 2023, 32(7): 074206. DOI:10.1088/1674-1056/accb4f
    7. Su, K., Zhong, Y., Zhang, S. et al. Quantum Interference between Nonidentical Single Particles. Physical Review Letters, 2022, 129(9): 093604. DOI:10.1103/PhysRevLett.129.093604

    Other cited types(0)

Catalog

    Article views (703) PDF downloads (594) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return