Express Letter
Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory
-
Abstract
Time synchronization and phase shaping of single photons both play fundamental roles in quantum information applications that rely on multi-photon quantum interference. Phase shaping typically requires separate modulators with extra insertion losses. Here, we develop an all-optical built-in phase modulator for single photons using a quantum memory. The fast phase modulation of a single photon in both step and linear manner are verified by observing the efficient quantum-memory-assisted Hong–Ou–Mandel interference between two single photons, where the anti-coalescence effect of bosonic photon pairs is demonstrated. The developed phase modulator may push forward the practical quantum information applications. -
-
References
[1] Hong C K, Ou Z Y, and Mandel L 1987 Phys. Rev. Lett. 59 2044 doi: 10.1103/PhysRevLett.59.2044[2] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, and Milburn G J 2007 Rev. Mod. Phys. 79 135 doi: 10.1103/RevModPhys.79.135[3] Duan L M, Lukin M D, Cirac J I, and Zoller P 2001 Nature 414 413 doi: 10.1038/35106500[4] Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33 doi: 10.1103/RevModPhys.83.33[5] Kimble H J 2008 Nature 453 1023 doi: 10.1038/nature07127[6] Wehner S, Elkouss D, and Hanson R 2018 Science 362 eaam9288 doi: 10.1126/science.aam9288[7] Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Park H, Englund D, Lončar M, Sukachev D D, and Lukin M D 2020 Nature 580 60 doi: 10.1038/s41586-020-2103-5[8] Inoue K, Waks E, and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902 doi: 10.1103/PhysRevLett.89.037902[9] Marcikic I, de Riedmatten H, Tittel W, Zbinden H, Legré M, and Gisin N 2004 Phys. Rev. Lett. 93 180502 doi: 10.1103/PhysRevLett.93.180502[10] Raymer M G and Walmsley I A 2020 Phys. Scr. 95 064002 doi: 10.1088/1402-4896/ab6153[11] Specht H P, Bochmann J, Mücke M, Weber B, Figueroa E, Moehring D L, and Rempe G 2009 Nat. Photon. 3 469 doi: 10.1038/nphoton.2009.115[12] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, and Żukowski M 2012 Rev. Mod. Phys. 84 777 doi: 10.1103/RevModPhys.84.777[13] Qian P, Gu Z, Cao R, Wen R, Ou Z Y, Chen J F, and Zhang W 2016 Phys. Rev. Lett. 117 013602 doi: 10.1103/PhysRevLett.117.013602[14] Liu S, Lai X, Yang C, and Chen J F 2021 Chin. Phys. Lett. 38 084201 doi: 10.1088/0256-307X/38/8/084201[15] Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, and Tittel W 2013 J. Mod. Opt. 60 1519 doi: 10.1080/09500340.2013.856482[16] Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X M, England D G, and Walmsley I A 2013 Phys. Rev. Lett. 110 133601 doi: 10.1103/PhysRevLett.110.133601[17] Kaneda F, Xu F, Chapman J, and Kwiat P G 2017 Optica 4 1034 doi: 10.1364/OPTICA.4.001034[18] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, and Pan J W 2019 Nat. Photon. 13 210 doi: 10.1038/s41566-018-0342-x[19] Boller K J, Imamoğlu A, and Harris S E 1991 Phys. Rev. Lett. 66 2593 doi: 10.1103/PhysRevLett.66.2593[20] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, and Chen Y C 2018 Phys. Rev. Lett. 120 183602 doi: 10.1103/PhysRevLett.120.183602[21] Vernaz-Gris P, Huang K, Cao M, Sheremet A S, and Laurat J 2018 Nat. Commun. 9 363 doi: 10.1038/s41467-017-02775-8[22] Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, and Zhu S L 2019 Nat. Photon. 13 346 doi: 10.1038/s41566-019-0368-8[23] Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, and Walmsley I A 2010 Nat. Photon. 4 218 doi: 10.1038/nphoton.2010.30[24] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, and Guo G C 2015 Nat. Photon. 9 332 doi: 10.1038/nphoton.2015.43[25] Guo J, Feng X, Yang P, Yu Z, Chen L Q, Yuan C H, and Zhang W 2019 Nat. Commun. 10 148 doi: 10.1038/s41467-018-08118-5[26] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094 doi: 10.1103/PhysRevLett.84.5094[27] Patnaik A K, Kien F L, and Hakuta K 2004 Phys. Rev. A 69 035803 doi: 10.1103/PhysRevA.69.035803[28] Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y, and Zhang W 2015 Phys. Rev. Lett. 115 043602 doi: 10.1103/PhysRevLett.115.043602[29] Qiu C, Chen S, Chen L Q, Chen B, Guo J, Ou Z Y, and Zhang W 2016 Optica 3 775 doi: 10.1364/OPTICA.3.000775[30] Guo X, Mei Y, and Du S 2018 Phys. Rev. A 97 063805 doi: 10.1103/PhysRevA.97.063805[31] Mair A, Hager J, Phillips D F, Walsworth R L, and Lukin M D 2002 Phys. Rev. A 65 031802 doi: 10.1103/PhysRevA.65.031802[32] Lukin M D 2003 Rev. Mod. Phys. 75 457 doi: 10.1103/RevModPhys.75.457[33] Jeong T, Park J, and Moon H S 2017 Sci. Rep. 7 15559 doi: 10.1038/s41598-017-15469-4[34] Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H, and Zhu S L 2019 Chin. Phys. Lett. 36 074202 doi: 10.1088/0256-307X/36/7/074202[35] Legero T, Wilk T, Hennrich M, Rempe G, and Kuhn A 2004 Phys. Rev. Lett. 93 070503 doi: 10.1103/PhysRevLett.93.070503[36] Yan H, Zhu S L, and Du S W 2011 Chin. Phys. Lett. 28 070307 doi: 10.1088/0256-307X/28/7/070307[37] Knill E, Laflamme R, and Milburn G J 2001 Nature 409 46 doi: 10.1038/35051009 -
Related Articles
[1] Yi Cui, Rong Yu, Weiqiang Yu. Deconfined Quantum Critical Point: A Review of Progress [J]. Chin. Phys. Lett., 2025, 42(4): 047503. doi: 10.1088/0256-307X/42/4/047503 [2] LIU Tao, HUANG Zheng. High-Efficiency Graphene Photo Sensor Using a Transparent Electrode [J]. Chin. Phys. Lett., 2011, 28(10): 107301. doi: 10.1088/0256-307X/28/10/107301 [3] YAN Hui, ZHU Shi-Liang, DU Sheng-Wang. Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons [J]. Chin. Phys. Lett., 2011, 28(7): 070307. doi: 10.1088/0256-307X/28/7/070307 [4] DU Gui-Qiang, JIANG Hai-tao, LI Hong-Qiang, ZHANG Ye-Wen, CHEN Hong. High-Efficiency Bistable Switching Based on One-Dimensional Photonic Crystals with Single-Negative Materials [J]. Chin. Phys. Lett., 2008, 25(8): 2900-2903. [5] YAN Feng-Li, GAO Ting, LI You-Cheng. Quantum Secret Sharing Protocol between Multiparty and Multiparty with Single Photons and Unitary Transformations [J]. Chin. Phys. Lett., 2008, 25(4): 1187-1190. [6] HOU Ping, LI Xi-Han, DENG Fu-Guo, ZHOU Hong-Yu. Efficient Three-Party Quantum Secret Sharing with Single Photons [J]. Chin. Phys. Lett., 2007, 24(8): 2181-2184. [7] DUAN Yu, HOU Jing-Ying, WU Zhi-Jun, CHENG Gang, ZHAO Yi, LIU Shi-Yong. High-Efficiency White Organic Light-Emitting Devices Based on Multiple Quantum-Well Structure [J]. Chin. Phys. Lett., 2004, 21(3): 534-536. [8] XIE Wen-Fa, LI Chuan-Nan, LIU Shi-Yong. High-Efficiency Organic Double-Quantum-Well Light-Emitting Devices Using 5,6,11,12-Tetraphenylnaphthacene Sub-monolayer as Potential Well [J]. Chin. Phys. Lett., 2003, 20(6): 956-958. [9] SUN Xiudong, ZHANG Jingwen, ZHOU Zhongxiang, XU Kebin, HONG Jing, JIANG Quanzhong, CHEN Huanchu, ZHU Guizhi. Coherent Mutually Pumped Phase Conjugation Induced with High-Efficiency by Self-Pumped Phase Conjugate Reflection [J]. Chin. Phys. Lett., 1995, 12(9): 533-536. [10] XU Huibin. HYSTERESIS OF PSEUDOELASTICITY IN A SINGLE CRYSTAL WITH SHAPE MEMORY EFFECT [J]. Chin. Phys. Lett., 1990, 7(7): 289-291. -
Supplements
Other Related Supplements
-
Cover image
167KB
-
-
Cited by
Periodical cited type(7)
1. Li, H., Lan, Y., Zeng, R. et al. Controllable single-photon transport mediated by a time-modulated Jaynes-Cummings model. Journal of Physics B: Atomic, Molecular and Optical Physics, 2024, 57(6): 065501. DOI:10.1088/1361-6455/ad2e2b 2. Li, H.-Z., Zeng, R., Hu, M. et al. Dynamic modulated single-photon routing. Chinese Physics B, 2023, 32(12): 124203. DOI:10.1088/1674-1056/acf662 3. Wang, Y.-F., Zhou, Y., Wang, Y. et al. Performance and application analysis of quantum memory | [量子存储性能及应用分析]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(20): 206701. DOI:10.7498/aps.72.20231203 4. Davidson, O., Yogev, O., Poem, E. et al. Single-Photon Synchronization with a Room-Temperature Atomic Quantum Memory. Physical Review Letters, 2023, 131(3): 033601. DOI:10.1103/PhysRevLett.131.033601 5. Li, J.-F., Wang, Y.-F., Huang, P.-S. et al. Nonreciprocity in Cold Atoms Based on Electromagnetically Induced Transparency. Physical Review Applied, 2023, 20(1): 014027. DOI:10.1103/PhysRevApplied.20.014027 6. Wang, X., Wang, J., Zuo, Y. et al. Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles. Chinese Physics B, 2023, 32(7): 074206. DOI:10.1088/1674-1056/accb4f 7. Su, K., Zhong, Y., Zhang, S. et al. Quantum Interference between Nonidentical Single Particles. Physical Review Letters, 2022, 129(9): 093604. DOI:10.1103/PhysRevLett.129.093604 Other cited types(0)