Low-Noise Intensity Amplification of a Bright Entangled Beam
-
Abstract
We experimentally demonstrate a low-noise phase-sensitive amplifier (PSA) scheme that is able to amplify bright entangled beams at a high level intensity gain of up to 4.4. Moreover, we demonstrate that the PSA scheme introduces much less uncorrelated extra noise to the entangled state than the phase-insensitive amplifier scheme with the same intensity gain. This PSA scheme has potential applications for quantum communication in continuous variable regimes. -
-
References
[1] Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865 doi: 10.1103/RevModPhys.81.865[2] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 doi: 10.1103/RevModPhys.77.513[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, and Lloyd S 2012 Rev. Mod. Phys. 84 621 doi: 10.1103/RevModPhys.84.621[4] Ekert A K 1991 Phys. Rev. Lett. 67 661 doi: 10.1103/PhysRevLett.67.661[5] Ralph T C 1999 Phys. Rev. A 61 010303R doi: 10.1103/PhysRevA.61.010303[6] Naik D S, Peterson C G, White A G, Berglund A J, and Kwiat P G 2000 Phys. Rev. Lett. 84 4733 doi: 10.1103/PhysRevLett.84.4733[7] Tittel W, Brendel J, Zbinden H, and Gisin N 2000 Phys. Rev. Lett. 84 4737 doi: 10.1103/PhysRevLett.84.4737[8] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J, and Grangier P 2003 Nature 421 238 doi: 10.1038/nature01289[9] Gisin N, Pironio S, and Sangouard N 2010 Phys. Rev. Lett. 105 070501 doi: 10.1103/PhysRevLett.105.070501[10] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 doi: 10.1103/PhysRevLett.69.2881[11] Zhang J and Peng K 2000 Phys. Rev. A 62 064302 doi: 10.1103/PhysRevA.62.064302[12] Li X, Pan Q, Jing J, Zhang J, Xie C, and Peng K 2002 Phys. Rev. Lett. 88 047904 doi: 10.1103/PhysRevLett.88.047904[13] Heaney L and Vedral V 2009 Phys. Rev. Lett. 103 200502 doi: 10.1103/PhysRevLett.103.200502[14] McCormick C F, Boyer V, Arimonda E, and Lett P D 2007 Opt. Lett. 32 178 doi: 10.1364/OL.32.000178[15] Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544 doi: 10.1126/science.1158275[16] Marino A M, Pooser R C, Boyer V, and Lett P D 2009 Nature 457 859 doi: 10.1038/nature07751[17] Pooser R C, Marino A M, Boyer V, Jones K M, and Lett P D 2009 Phys. Rev. Lett. 103 010501 doi: 10.1103/PhysRevLett.103.010501[18] Corzo N V, Marino A M, Jones K M, and Lett P D 2012 Phys. Rev. Lett. 109 043602 doi: 10.1103/PhysRevLett.109.043602[19] Liu S, Lou Y, and Jing J 2019 Phys. Rev. Lett. 123 113602 doi: 10.1103/PhysRevLett.123.113602[20] Tong Z, Lundström C, Andrekson P A, Mckinstrie C J, Karlsson M, Blessing D J, Tipsuwannakul E, Puttnam B J, Toda H, and Grüner-Nielsen L 2011 Nat. Photon. 5 430 doi: 10.1038/nphoton.2011.79[21] Kakande J, Lundström C, Andrekson P A, Tong Z, Karlsson M, Petropoulos P, Parmigiani F, and Richardson D J 2010 Opt. Express 18 4130 doi: 10.1364/OE.18.004130[22] Tong Z, McKinstrie C J, Lundström C, Karlsson M, and Andrekson P A 2010 Opt. Express 18 15426 doi: 10.1364/OE.18.015426[23] Tong Z, Bogris A, Lundström C, McKinstrie C J, Vasilyev M, Karlsson M, and Andrekson P A 2010 Opt. Express 18 14820 doi: 10.1364/OE.18.014820[24] Tong Z, Bogris A, Karlsson M, and Andrekson P A 2010 Opt. Express 18 2884 doi: 10.1364/OE.18.002884[25] Fang Y and Jing J 2015 New J. Phys. 17 023027 doi: 10.1088/1367-2630/17/2/023027[26] Duan L M, Giedke G, Cirac J I, and Zoller P 2000 Phys. Rev. Lett. 84 2722 doi: 10.1103/PhysRevLett.84.2722[27] Simon R 2000 Phys. Rev. Lett. 84 2726 doi: 10.1103/PhysRevLett.84.2726[28] Clark J B, Glasser R T, Glorieux Q, and Lett P D 2014 Nat. Photon. 8 515 doi: 10.1038/nphoton.2014.112[29] Xin J, Lu X M, Wang H, and Jing J 2019 Phys. Rev. A 99 013813 doi: 10.1103/PhysRevA.99.013813[30] Huang K, Jeannic H L, Ruaudel J, Morin O, and Laurat J 2014 Rev. Sci. Instrum. 85 123112 doi: 10.1063/1.4903869 -
Related Articles
[1] HU Xiao-Rui, CHEN Yong. Binary Darboux Transformation for the Modified Kadomtsev--Petviashvili Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3840-3843. [2] HU Heng-Chun, LOU Sen-Yue. Construction of the Darboux Transformaiton and Solutions to the Modified Nizhnik--Novikov--Veselov Equation [J]. Chin. Phys. Lett., 2004, 21(11). [3] WANG Zun-Jing, CHEN Min, GUO Zeng-Yuan. Modified Transition State Theory for Evaporation and Condensation [J]. Chin. Phys. Lett., 2002, 19(4): 537-539. [4] WEI Chong-de. Local Magnetic Relaxation in High-Temperature Superconductors [J]. Chin. Phys. Lett., 1997, 14(12): 940-942. [5] LOU Sen-yue, CHEN Li-li, WU Qi-xian. New Symmetry Constraints of the Modified Kadomtsev-Petviashvili Equation [J]. Chin. Phys. Lett., 1997, 14(1): 1-4. [6] CHENG Kaijia. A Suggestion to the Designing of Ceramic Superconductors withHigher Transition Temperatures [J]. Chin. Phys. Lett., 1994, 11(6): 376-378. [7] JI Helin, QIN Mengjun, JIN Xin, YAO Xixian, FU Yaoxian. Extended Rate Equation for Flux Motion in High-Tc Superconductors [J]. Chin. Phys. Lett., 1994, 11(6): 369-372. [8] ZHANG Jiefang. Six Sets of Symmetries of the Variable Coefficient Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1994, 11(1): 4-7. [9] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295. [10] SUN Changde. MODIFIED TAKAGIS EQUATION OF X-RAY DIFFRACTION [J]. Chin. Phys. Lett., 1988, 5(11): 505-508.