Low-Noise Intensity Amplification of a Bright Entangled Beam

Funds: Supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2021-01-07-00-08-E00100), the National Natural Science Foundation of China (Grant Nos. 11874155, 91436211, and 11374104), the Basic Research Project of Shanghai Science and Technology Commission (20JC1416100), the Natural Science Foundation of Shanghai (Grant No. 17ZR1442900); Minhang Leading Talents (Grant No. 201971), the Program of Scientific and Technological Innovation of Shanghai (Grant No. 17JC1400401), the Shanghai Sailing Program (Grant No. 21YF1410800), the National Basic Research Program of China (Grant No. 2016YFA0302103), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the 111 Project (Grant No. B12024).
  • Received Date: June 12, 2021
  • Published Date: August 31, 2021
  • We experimentally demonstrate a low-noise phase-sensitive amplifier (PSA) scheme that is able to amplify bright entangled beams at a high level intensity gain of up to 4.4. Moreover, we demonstrate that the PSA scheme introduces much less uncorrelated extra noise to the entangled state than the phase-insensitive amplifier scheme with the same intensity gain. This PSA scheme has potential applications for quantum communication in continuous variable regimes.
  • Article Text

  • [1]
    Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865 doi: 10.1103/RevModPhys.81.865

    CrossRef Google Scholar

    [2]
    Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 doi: 10.1103/RevModPhys.77.513

    CrossRef Google Scholar

    [3]
    Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, and Lloyd S 2012 Rev. Mod. Phys. 84 621 doi: 10.1103/RevModPhys.84.621

    CrossRef Google Scholar

    [4]
    Ekert A K 1991 Phys. Rev. Lett. 67 661 doi: 10.1103/PhysRevLett.67.661

    CrossRef Google Scholar

    [5]
    Ralph T C 1999 Phys. Rev. A 61 010303R doi: 10.1103/PhysRevA.61.010303

    CrossRef Google Scholar

    [6]
    Naik D S, Peterson C G, White A G, Berglund A J, and Kwiat P G 2000 Phys. Rev. Lett. 84 4733 doi: 10.1103/PhysRevLett.84.4733

    CrossRef Google Scholar

    [7]
    Tittel W, Brendel J, Zbinden H, and Gisin N 2000 Phys. Rev. Lett. 84 4737 doi: 10.1103/PhysRevLett.84.4737

    CrossRef Google Scholar

    [8]
    Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J, and Grangier P 2003 Nature 421 238 doi: 10.1038/nature01289

    CrossRef Google Scholar

    [9]
    Gisin N, Pironio S, and Sangouard N 2010 Phys. Rev. Lett. 105 070501 doi: 10.1103/PhysRevLett.105.070501

    CrossRef Google Scholar

    [10]
    Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881 doi: 10.1103/PhysRevLett.69.2881

    CrossRef Google Scholar

    [11]
    Zhang J and Peng K 2000 Phys. Rev. A 62 064302 doi: 10.1103/PhysRevA.62.064302

    CrossRef Google Scholar

    [12]
    Li X, Pan Q, Jing J, Zhang J, Xie C, and Peng K 2002 Phys. Rev. Lett. 88 047904 doi: 10.1103/PhysRevLett.88.047904

    CrossRef Google Scholar

    [13]
    Heaney L and Vedral V 2009 Phys. Rev. Lett. 103 200502 doi: 10.1103/PhysRevLett.103.200502

    CrossRef Google Scholar

    [14]
    McCormick C F, Boyer V, Arimonda E, and Lett P D 2007 Opt. Lett. 32 178 doi: 10.1364/OL.32.000178

    CrossRef Google Scholar

    [15]
    Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544 doi: 10.1126/science.1158275

    CrossRef Google Scholar

    [16]
    Marino A M, Pooser R C, Boyer V, and Lett P D 2009 Nature 457 859 doi: 10.1038/nature07751

    CrossRef Google Scholar

    [17]
    Pooser R C, Marino A M, Boyer V, Jones K M, and Lett P D 2009 Phys. Rev. Lett. 103 010501 doi: 10.1103/PhysRevLett.103.010501

    CrossRef Google Scholar

    [18]
    Corzo N V, Marino A M, Jones K M, and Lett P D 2012 Phys. Rev. Lett. 109 043602 doi: 10.1103/PhysRevLett.109.043602

    CrossRef Google Scholar

    [19]
    Liu S, Lou Y, and Jing J 2019 Phys. Rev. Lett. 123 113602 doi: 10.1103/PhysRevLett.123.113602

    CrossRef Google Scholar

    [20]
    Tong Z, Lundström C, Andrekson P A, Mckinstrie C J, Karlsson M, Blessing D J, Tipsuwannakul E, Puttnam B J, Toda H, and Grüner-Nielsen L 2011 Nat. Photon. 5 430 doi: 10.1038/nphoton.2011.79

    CrossRef Google Scholar

    [21]
    Kakande J, Lundström C, Andrekson P A, Tong Z, Karlsson M, Petropoulos P, Parmigiani F, and Richardson D J 2010 Opt. Express 18 4130 doi: 10.1364/OE.18.004130

    CrossRef Google Scholar

    [22]
    Tong Z, McKinstrie C J, Lundström C, Karlsson M, and Andrekson P A 2010 Opt. Express 18 15426 doi: 10.1364/OE.18.015426

    CrossRef Google Scholar

    [23]
    Tong Z, Bogris A, Lundström C, McKinstrie C J, Vasilyev M, Karlsson M, and Andrekson P A 2010 Opt. Express 18 14820 doi: 10.1364/OE.18.014820

    CrossRef Google Scholar

    [24]
    Tong Z, Bogris A, Karlsson M, and Andrekson P A 2010 Opt. Express 18 2884 doi: 10.1364/OE.18.002884

    CrossRef Google Scholar

    [25]
    Fang Y and Jing J 2015 New J. Phys. 17 023027 doi: 10.1088/1367-2630/17/2/023027

    CrossRef Google Scholar

    [26]
    Duan L M, Giedke G, Cirac J I, and Zoller P 2000 Phys. Rev. Lett. 84 2722 doi: 10.1103/PhysRevLett.84.2722

    CrossRef Google Scholar

    [27]
    Simon R 2000 Phys. Rev. Lett. 84 2726 doi: 10.1103/PhysRevLett.84.2726

    CrossRef Google Scholar

    [28]
    Clark J B, Glasser R T, Glorieux Q, and Lett P D 2014 Nat. Photon. 8 515 doi: 10.1038/nphoton.2014.112

    CrossRef Google Scholar

    [29]
    Xin J, Lu X M, Wang H, and Jing J 2019 Phys. Rev. A 99 013813 doi: 10.1103/PhysRevA.99.013813

    CrossRef Google Scholar

    [30]
    Huang K, Jeannic H L, Ruaudel J, Morin O, and Laurat J 2014 Rev. Sci. Instrum. 85 123112 doi: 10.1063/1.4903869

    CrossRef Google Scholar

  • Related Articles

    [1]HU Xiao-Rui, CHEN Yong. Binary Darboux Transformation for the Modified Kadomtsev--Petviashvili Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3840-3843.
    [2]HU Heng-Chun, LOU Sen-Yue. Construction of the Darboux Transformaiton and Solutions to the Modified Nizhnik--Novikov--Veselov Equation [J]. Chin. Phys. Lett., 2004, 21(11).
    [3]WANG Zun-Jing, CHEN Min, GUO Zeng-Yuan. Modified Transition State Theory for Evaporation and Condensation [J]. Chin. Phys. Lett., 2002, 19(4): 537-539.
    [4]WEI Chong-de. Local Magnetic Relaxation in High-Temperature Superconductors [J]. Chin. Phys. Lett., 1997, 14(12): 940-942.
    [5]LOU Sen-yue, CHEN Li-li, WU Qi-xian. New Symmetry Constraints of the Modified Kadomtsev-Petviashvili Equation [J]. Chin. Phys. Lett., 1997, 14(1): 1-4.
    [6]CHENG Kaijia. A Suggestion to the Designing of Ceramic Superconductors withHigher Transition Temperatures [J]. Chin. Phys. Lett., 1994, 11(6): 376-378.
    [7]JI Helin, QIN Mengjun, JIN Xin, YAO Xixian, FU Yaoxian. Extended Rate Equation for Flux Motion in High-Tc Superconductors [J]. Chin. Phys. Lett., 1994, 11(6): 369-372.
    [8]ZHANG Jiefang. Six Sets of Symmetries of the Variable Coefficient Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1994, 11(1): 4-7.
    [9]TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.
    [10]SUN Changde. MODIFIED TAKAGIS EQUATION OF X-RAY DIFFRACTION [J]. Chin. Phys. Lett., 1988, 5(11): 505-508.

Catalog

    Article views (447) PDF downloads (282) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return