Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode
-
Abstract
Lithium-excess cation disordered rock-salt materials have received much attention because of their high-capacity as a candidate for cathodes for lithium-ion batteries. The ultra-high specific capacity comes from the coordinated charge compensation of both transition metal and lattice oxygen. However, the oxygen redox at high voltage usually leads to irreversible oxygen release, thereby degrading the structure stability and electrochemical performance. Lithium-excess LiNiTiMoOF (, 0.05, 0.10, 0.15, and 0.20) with different amounts of fluorine substitution were synthesized. Among them, LiNiTiMoOF exhibits a lower capacity decline, better rate performance, and lower structure damage. The effects of fluorine substitution on the electrochemical property and structural stability were systematic studied by x-ray photoelectron spectroscopy and in situ XRD etc. Results show that fluorine substitution reduces the average valence of the anion, allowing a larger proportion of low-valent redox active transition metals, increasing the transition metal redox capacity, inhibiting irreversible oxygen release and side reaction. Fluorine substitution further improves the structural stability and suppresses lattice deformation of the material. -
-
References
[1] Yoshino A 2012 Angew. Chem. Int. Ed. Engl. 51 5798 doi: 10.1002/anie.201105006[2] Gupta A, Mullins C B, and Goodenough J B 2013 J. Power Sources 243 817 doi: 10.1016/j.jpowsour.2013.06.073[3] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167 doi: 10.1021/ja3091438[4] Sato T et al.. 2018 J. Mater. Chem. A 6 13943 doi: 10.1039/C8TA03667E[5] Manthiram A 2020 Nat. Commun. 11 1550 doi: 10.1038/s41467-020-15355-0[6] Liu Q et al.. 2018 Nat. Energy 3 936 doi: 10.1038/s41560-018-0180-6[7] Manthiram A et al.. 2016 Adv. Energy Mater. 6 1501010 doi: 10.1002/aenm.201501010[8] Whittingham M S 2004 Chem. Rev. 104 4271 doi: 10.1021/cr020731c[9] Masquelier C and Croguennec L 2013 Chem. Rev. 113 6552 doi: 10.1021/cr3001862[10] Hy S et al.. 2016 Energy & Environ. Sci. 9 1931 doi: 10.1039/C5EE03573B[11] Lee J et al.. 2015 Energy & Environ. Sci. 8 3255 doi: 10.1039/C5EE02329G[12] Hamaguchi M et al.. 2020 Electrochim. Acta 354 136630 doi: 10.1016/j.electacta.2020.136630[13] Zou Y et al.. 2017 Adv. Sci. 4 1600262 doi: 10.1002/advs.201600262[14] Zhang X et al.. 2010 J. Power Sources 195 1292 doi: 10.1016/j.jpowsour.2009.09.029[15] Lee J et al.. 2014 Science 343 519 doi: 10.1126/science.1246432[16] Clément R J, Lun Z, and Ceder G 2020 Energy & Environ. Sci. 13 345 doi: 10.1039/C9EE02803J[17] Urban A, Lee J, and Ceder G 2014 Adv. Energy Mater. 4 1400478 doi: 10.1002/aenm.201400478[18] Lun Z et al.. 2020 Chem 6 153 doi: 10.1016/j.chempr.2019.10.001[19] Zhao E et al.. 2019 Energy Storage Mater. 16 354 doi: 10.1016/j.ensm.2018.06.016[20] Yabuuchi N 2019 Chem. Rec. 19 690 doi: 10.1002/tcr.201800089[21] Takeda N et al.. 2017 J. Power Sources 367 122 doi: 10.1016/j.jpowsour.2017.09.060[22] Yabuuchi N et al.. 2016 Chem. Mater. 28 416 doi: 10.1021/acs.chemmater.5b04092[23] Yabuuchi N et al.. 2015 Proc. Natl. Acad. Sci. USA 112 7650 doi: 10.1073/pnas.1504901112[24] Yabuuchi N et al.. 2016 Nat. Commun. 7 13814 doi: 10.1038/ncomms13814[25] Hoshino S et al.. 2017 ACS Energy Lett. 2 733 doi: 10.1021/acsenergylett.7b00037[26] Nakajima M and Yabuuchi N 2017 Chem. Mater. 29 6927 doi: 10.1021/acs.chemmater.7b02343[27] Twu N et al.. 2015 Nano Lett. 15 596 doi: 10.1021/nl5040754[28] Glazier S L et al.. 2015 Chem. Mater. 27 7751 doi: 10.1021/acs.chemmater.5b03530[29] Kitchaev D A et al.. 2018 Energy & Environ. Sci. 11 2159 doi: 10.1039/C8EE00816G[30] Wang R et al.. 2015 Electrochem. Commun. 60 70 doi: 10.1016/j.elecom.2015.08.003[31] Song B et al.. 2013 J. Mater. Chem. A 1 9954 doi: 10.1039/c3ta11580a[32] Yang M et al.. 2012 J. Mater. Chem. 22 6200 doi: 10.1039/c2jm15587g[33] Clément R J et al.. 2018 Chem. Mater. 30 6945 doi: 10.1021/acs.chemmater.8b03794[34] Lee J et al.. 2017 Nat. Commun. 8 981 doi: 10.1038/s41467-017-01115-0[35] Crafton M J et al.. 2020 Adv. Energy Mater. 10 2001500 doi: 10.1002/aenm.202001500[36] Wang Y et al.. 2018 J. Phys. Chem. C 122 27836 doi: 10.1021/acs.jpcc.8b08669[37] Ahn J, Chen D, and Chen G 2020 Adv. Energy Mater. 10 2001671 doi: 10.1002/aenm.202001671[38] Zhou K et al.. 2020 Energy Storage Mater. 32 234 doi: 10.1016/j.ensm.2020.07.012[39] Lee J et al.. 2018 Nature 556 185 doi: 10.1038/s41586-018-0015-4[40] Xu J et al.. 2020 Solid State Ionics 345 115172 doi: 10.1016/j.ssi.2019.115172[41] Huang Y et al.. 2020 Solid State Ionics 351 115341 doi: 10.1016/j.ssi.2020.115341[42] Shaju K M, Rao G V S, and Chowdari B V R 2002 Electrochim. Acta 48 145 doi: 10.1016/S0013-46860200593-5[43] Papp J K et al.. 2021 Electrochim. Acta 368 137505 doi: 10.1016/j.electacta.2020.137505[44] Levi E et al.. 1999 Solid State Ionics 126 97 doi: 10.1016/S0167-27389900118-6[45] Shannon R D 1976 Acta Cryst. A 32 751 doi: 10.1107/S0567739476001551[46] Wang X et al.. 2017 J. Power Sources 359 270 doi: 10.1016/j.jpowsour.2017.05.070[47] Babu D B et al.. 2019 J. Power Sources 436 226870 doi: 10.1016/j.jpowsour.2019.226870[48] Yu Z et al.. 2019 ACS Appl. Mater. & Interfaces 11 35777 doi: 10.1021/acsami.9b12822[49] Zhang L et al.. 2008 J. Power Sources 185 534 doi: 10.1016/j.jpowsour.2008.06.054[50] Zheng S et al.. 2019 J. Alloys Compd. 773 1 doi: 10.1016/j.jallcom.2018.09.261[51] Shen C H et al.. 2014 ACS Appl. Mater. & Interfaces 6 5516 doi: 10.1021/am405844b[52] Qiao Y Q et al.. 2011 J. Phys. Chem. C 115 25508 doi: 10.1021/jp2080176[53] Wang Z et al.. 2019 Ceram. Int. 45 20016 doi: 10.1016/j.ceramint.2019.06.261[54] Assat G et al.. 2016 J. Electrochem. Soc. 163 A2965 doi: 10.1149/2.0531614jes[55] Naylor A J et al.. 2020 ACS Appl. Energy Mater. 3 5937 doi: 10.1021/acsaem.0c00839[56] Wei X et al.. 2013 Electrochim. Acta 107 549 doi: 10.1016/j.electacta.2013.05.118[57] Yang M et al.. 2019 ACS Appl. Mater. & Interfaces 11 44144 doi: 10.1021/acsami.9b14137[58] Xie Q et al.. 2019 Chem. Mater. 31 8886 doi: 10.1021/acs.chemmater.9b02916[59] Schulz N et al.. 2018 J. Electrochem. Soc. 165 A833 doi: 10.1149/2.0881803jes[60] Andersson D P A A M et al.. 2002 J. Electrochem. Soc. 149 A1358 doi: 10.1149/1.1505636[61] Zheng S et al.. 2020 ACS Appl. Mater. & Interfaces 12 40347 doi: 10.1021/acsami.0c11544[62] Li L et al.. 2021 Adv. Funct. Mater. 31 2101888 doi: 10.1002/adfm.202101888[63] Meng F et al.. 2019 Ionics 25 1967 doi: 10.1007/s11581-018-2663-7[64] Huang B et al.. 2014 J. Power Sources 252 200 doi: 10.1016/j.jpowsour.2013.11.092 -
Related Articles
[1] Yun Lu, Dong Zhang, Kai Chang. Monolayer Bismuth Ferrite: Topological Antiferromagnetic Metal with Bimeron Spin Textures [J]. Chin. Phys. Lett., 2025, 42(5): 057402. doi: 10.1088/0256-307X/42/5/057402 [2] XIAO Xia, SHAN Xing-Meng, LIU Ya-Liang. Evaluating of Adhesion Property of ULSI Interconnect Films by the Surface Acoustic Waves [J]. Chin. Phys. Lett., 2010, 27(1): 018502. doi: 10.1088/0256-307X/27/1/018502 [3] AN Hai-Long, LIU Yu-Zhi, ZHANG Su-Hua, ZHAN Yong, ZHANG Hai-Lin. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity [J]. Chin. Phys. Lett., 2008, 25(9): 3165-3168. [4] LIU Jian-Lin, FENG Xi-Qiao. Capillary Adhesion of Microbeams: Finite Deformation Analysis [J]. Chin. Phys. Lett., 2007, 24(8): 2349-2352. [5] CHEN Ming, LUO Hong-Wei, ZHANG Zheng-Xuan, ZHANG En-Xia, YANG Hui, TIAN Hao, WANG Ru, YU Wen-Jie. Ionizing Dose Effect of Thermal Oxides Implanted with Si+ Ions [J]. Chin. Phys. Lett., 2007, 24(6): 1775-1777. [6] WANG Yong, JIA Hai-Qiang, MAI Zhen-Hong, JIA Quan-Jie, JIANG Xiao-Ming. Investigation of Microstructures of AlAs Oxides Before and After Oxidation [J]. Chin. Phys. Lett., 2004, 21(6): 1128-1130. [7] WEI Zheng, ZHAO Ya-Pu. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope [J]. Chin. Phys. Lett., 2004, 21(4): 616-619. [8] WEN Hai-Hu, YANG Hai-Peng, LU Xi-Feng, YAN Jing. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides [J]. Chin. Phys. Lett., 2003, 20(5): 725-728. [9] QIAO Rongwen, ZHAO Zhongxian. Relationship between Tc and σ J in Doped Superconducting Copper Oxides [J]. Chin. Phys. Lett., 1991, 8(6): 307-309. [10] SUN Jiansan, QI Zhenzhong, LIU Ling, YAO Weiguo. AN EXPERIMENTAL INVESTIGATION ON ADHESION OF IRON IN CONTACT WITH IRON AND COPPER [J]. Chin. Phys. Lett., 1987, 4(5): 209-212.