Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode

Funds: Supported by National Natural Science Foundation of China (Grant Nos. 51602191 and 52072233), and the Beijing National Laboratory for Condensed Matter Physics.
  • Received Date: April 28, 2021
  • Published Date: July 31, 2021
  • Lithium-excess cation disordered rock-salt materials have received much attention because of their high-capacity as a candidate for cathodes for lithium-ion batteries. The ultra-high specific capacity comes from the coordinated charge compensation of both transition metal and lattice oxygen. However, the oxygen redox at high voltage usually leads to irreversible oxygen release, thereby degrading the structure stability and electrochemical performance. Lithium-excess Li1.14Ni0.57+0.5xTi0.190.5xMo0.10O2xFx (x=0, 0.05, 0.10, 0.15, and 0.20) with different amounts of fluorine substitution were synthesized. Among them, Li1.14Ni0.620Ti0.140Mo0.10O1.85F0.15 exhibits a lower capacity decline, better rate performance, and lower structure damage. The effects of fluorine substitution on the electrochemical property and structural stability were systematic studied by x-ray photoelectron spectroscopy and in situ XRD etc. Results show that fluorine substitution reduces the average valence of the anion, allowing a larger proportion of low-valent redox active transition metals, increasing the transition metal redox capacity, inhibiting irreversible oxygen release and side reaction. Fluorine substitution further improves the structural stability and suppresses lattice deformation of the material.
  • Article Text

  • [1]
    Yoshino A 2012 Angew. Chem. Int. Ed. Engl. 51 5798 doi: 10.1002/anie.201105006

    CrossRef Google Scholar

    [2]
    Gupta A, Mullins C B, and Goodenough J B 2013 J. Power Sources 243 817 doi: 10.1016/j.jpowsour.2013.06.073

    CrossRef Google Scholar

    [3]
    Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167 doi: 10.1021/ja3091438

    CrossRef Google Scholar

    [4]
    Sato T et al.. 2018 J. Mater. Chem. A 6 13943 doi: 10.1039/C8TA03667E

    CrossRef Google Scholar

    [5]
    Manthiram A 2020 Nat. Commun. 11 1550 doi: 10.1038/s41467-020-15355-0

    CrossRef Google Scholar

    [6]
    Liu Q et al.. 2018 Nat. Energy 3 936 doi: 10.1038/s41560-018-0180-6

    CrossRef Google Scholar

    [7]
    Manthiram A et al.. 2016 Adv. Energy Mater. 6 1501010 doi: 10.1002/aenm.201501010

    CrossRef Google Scholar

    [8]
    Whittingham M S 2004 Chem. Rev. 104 4271 doi: 10.1021/cr020731c

    CrossRef Google Scholar

    [9]
    Masquelier C and Croguennec L 2013 Chem. Rev. 113 6552 doi: 10.1021/cr3001862

    CrossRef Google Scholar

    [10]
    Hy S et al.. 2016 Energy & Environ. Sci. 9 1931 doi: 10.1039/C5EE03573B

    CrossRef Google Scholar

    [11]
    Lee J et al.. 2015 Energy & Environ. Sci. 8 3255 doi: 10.1039/C5EE02329G

    CrossRef Google Scholar

    [12]
    Hamaguchi M et al.. 2020 Electrochim. Acta 354 136630 doi: 10.1016/j.electacta.2020.136630

    CrossRef Google Scholar

    [13]
    Zou Y et al.. 2017 Adv. Sci. 4 1600262 doi: 10.1002/advs.201600262

    CrossRef Google Scholar

    [14]
    Zhang X et al.. 2010 J. Power Sources 195 1292 doi: 10.1016/j.jpowsour.2009.09.029

    CrossRef Google Scholar

    [15]
    Lee J et al.. 2014 Science 343 519 doi: 10.1126/science.1246432

    CrossRef Google Scholar

    [16]
    Clément R J, Lun Z, and Ceder G 2020 Energy & Environ. Sci. 13 345 doi: 10.1039/C9EE02803J

    CrossRef Google Scholar

    [17]
    Urban A, Lee J, and Ceder G 2014 Adv. Energy Mater. 4 1400478 doi: 10.1002/aenm.201400478

    CrossRef Google Scholar

    [18]
    Lun Z et al.. 2020 Chem 6 153 doi: 10.1016/j.chempr.2019.10.001

    CrossRef Google Scholar

    [19]
    Zhao E et al.. 2019 Energy Storage Mater. 16 354 doi: 10.1016/j.ensm.2018.06.016

    CrossRef Google Scholar

    [20]
    Yabuuchi N 2019 Chem. Rec. 19 690 doi: 10.1002/tcr.201800089

    CrossRef Google Scholar

    [21]
    Takeda N et al.. 2017 J. Power Sources 367 122 doi: 10.1016/j.jpowsour.2017.09.060

    CrossRef Google Scholar

    [22]
    Yabuuchi N et al.. 2016 Chem. Mater. 28 416 doi: 10.1021/acs.chemmater.5b04092

    CrossRef Google Scholar

    [23]
    Yabuuchi N et al.. 2015 Proc. Natl. Acad. Sci. USA 112 7650 doi: 10.1073/pnas.1504901112

    CrossRef Google Scholar

    [24]
    Yabuuchi N et al.. 2016 Nat. Commun. 7 13814 doi: 10.1038/ncomms13814

    CrossRef Google Scholar

    [25]
    Hoshino S et al.. 2017 ACS Energy Lett. 2 733 doi: 10.1021/acsenergylett.7b00037

    CrossRef Google Scholar

    [26]
    Nakajima M and Yabuuchi N 2017 Chem. Mater. 29 6927 doi: 10.1021/acs.chemmater.7b02343

    CrossRef Google Scholar

    [27]
    Twu N et al.. 2015 Nano Lett. 15 596 doi: 10.1021/nl5040754

    CrossRef Google Scholar

    [28]
    Glazier S L et al.. 2015 Chem. Mater. 27 7751 doi: 10.1021/acs.chemmater.5b03530

    CrossRef Google Scholar

    [29]
    Kitchaev D A et al.. 2018 Energy & Environ. Sci. 11 2159 doi: 10.1039/C8EE00816G

    CrossRef Google Scholar

    [30]
    Wang R et al.. 2015 Electrochem. Commun. 60 70 doi: 10.1016/j.elecom.2015.08.003

    CrossRef Google Scholar

    [31]
    Song B et al.. 2013 J. Mater. Chem. A 1 9954 doi: 10.1039/c3ta11580a

    CrossRef Google Scholar

    [32]
    Yang M et al.. 2012 J. Mater. Chem. 22 6200 doi: 10.1039/c2jm15587g

    CrossRef Google Scholar

    [33]
    Clément R J et al.. 2018 Chem. Mater. 30 6945 doi: 10.1021/acs.chemmater.8b03794

    CrossRef Google Scholar

    [34]
    Lee J et al.. 2017 Nat. Commun. 8 981 doi: 10.1038/s41467-017-01115-0

    CrossRef Google Scholar

    [35]
    Crafton M J et al.. 2020 Adv. Energy Mater. 10 2001500 doi: 10.1002/aenm.202001500

    CrossRef Google Scholar

    [36]
    Wang Y et al.. 2018 J. Phys. Chem. C 122 27836 doi: 10.1021/acs.jpcc.8b08669

    CrossRef Google Scholar

    [37]
    Ahn J, Chen D, and Chen G 2020 Adv. Energy Mater. 10 2001671 doi: 10.1002/aenm.202001671

    CrossRef Google Scholar

    [38]
    Zhou K et al.. 2020 Energy Storage Mater. 32 234 doi: 10.1016/j.ensm.2020.07.012

    CrossRef Google Scholar

    [39]
    Lee J et al.. 2018 Nature 556 185 doi: 10.1038/s41586-018-0015-4

    CrossRef Google Scholar

    [40]
    Xu J et al.. 2020 Solid State Ionics 345 115172 doi: 10.1016/j.ssi.2019.115172

    CrossRef Google Scholar

    [41]
    Huang Y et al.. 2020 Solid State Ionics 351 115341 doi: 10.1016/j.ssi.2020.115341

    CrossRef Google Scholar

    [42]
    Shaju K M, Rao G V S, and Chowdari B V R 2002 Electrochim. Acta 48 145 doi: 10.1016/S0013-46860200593-5

    CrossRef Google Scholar

    [43]
    Papp J K et al.. 2021 Electrochim. Acta 368 137505 doi: 10.1016/j.electacta.2020.137505

    CrossRef Google Scholar

    [44]
    Levi E et al.. 1999 Solid State Ionics 126 97 doi: 10.1016/S0167-27389900118-6

    CrossRef Google Scholar

    [45]
    Shannon R D 1976 Acta Cryst. A 32 751 doi: 10.1107/S0567739476001551

    CrossRef Google Scholar

    [46]
    Wang X et al.. 2017 J. Power Sources 359 270 doi: 10.1016/j.jpowsour.2017.05.070

    CrossRef Google Scholar

    [47]
    Babu D B et al.. 2019 J. Power Sources 436 226870 doi: 10.1016/j.jpowsour.2019.226870

    CrossRef Google Scholar

    [48]
    Yu Z et al.. 2019 ACS Appl. Mater. & Interfaces 11 35777 doi: 10.1021/acsami.9b12822

    CrossRef Google Scholar

    [49]
    Zhang L et al.. 2008 J. Power Sources 185 534 doi: 10.1016/j.jpowsour.2008.06.054

    CrossRef Google Scholar

    [50]
    Zheng S et al.. 2019 J. Alloys Compd. 773 1 doi: 10.1016/j.jallcom.2018.09.261

    CrossRef Google Scholar

    [51]
    Shen C H et al.. 2014 ACS Appl. Mater. & Interfaces 6 5516 doi: 10.1021/am405844b

    CrossRef Google Scholar

    [52]
    Qiao Y Q et al.. 2011 J. Phys. Chem. C 115 25508 doi: 10.1021/jp2080176

    CrossRef Google Scholar

    [53]
    Wang Z et al.. 2019 Ceram. Int. 45 20016 doi: 10.1016/j.ceramint.2019.06.261

    CrossRef Google Scholar

    [54]
    Assat G et al.. 2016 J. Electrochem. Soc. 163 A2965 doi: 10.1149/2.0531614jes

    CrossRef Google Scholar

    [55]
    Naylor A J et al.. 2020 ACS Appl. Energy Mater. 3 5937 doi: 10.1021/acsaem.0c00839

    CrossRef Google Scholar

    [56]
    Wei X et al.. 2013 Electrochim. Acta 107 549 doi: 10.1016/j.electacta.2013.05.118

    CrossRef Google Scholar

    [57]
    Yang M et al.. 2019 ACS Appl. Mater. & Interfaces 11 44144 doi: 10.1021/acsami.9b14137

    CrossRef Google Scholar

    [58]
    Xie Q et al.. 2019 Chem. Mater. 31 8886 doi: 10.1021/acs.chemmater.9b02916

    CrossRef Google Scholar

    [59]
    Schulz N et al.. 2018 J. Electrochem. Soc. 165 A833 doi: 10.1149/2.0881803jes

    CrossRef Google Scholar

    [60]
    Andersson D P A A M et al.. 2002 J. Electrochem. Soc. 149 A1358 doi: 10.1149/1.1505636

    CrossRef Google Scholar

    [61]
    Zheng S et al.. 2020 ACS Appl. Mater. & Interfaces 12 40347 doi: 10.1021/acsami.0c11544

    CrossRef Google Scholar

    [62]
    Li L et al.. 2021 Adv. Funct. Mater. 31 2101888 doi: 10.1002/adfm.202101888

    CrossRef Google Scholar

    [63]
    Meng F et al.. 2019 Ionics 25 1967 doi: 10.1007/s11581-018-2663-7

    CrossRef Google Scholar

    [64]
    Huang B et al.. 2014 J. Power Sources 252 200 doi: 10.1016/j.jpowsour.2013.11.092

    CrossRef Google Scholar

  • Related Articles

    [1]Yun Lu, Dong Zhang, Kai Chang. Monolayer Bismuth Ferrite: Topological Antiferromagnetic Metal with Bimeron Spin Textures [J]. Chin. Phys. Lett., 2025, 42(5): 057402. doi: 10.1088/0256-307X/42/5/057402
    [2]XIAO Xia, SHAN Xing-Meng, LIU Ya-Liang. Evaluating of Adhesion Property of ULSI Interconnect Films by the Surface Acoustic Waves [J]. Chin. Phys. Lett., 2010, 27(1): 018502. doi: 10.1088/0256-307X/27/1/018502
    [3]AN Hai-Long, LIU Yu-Zhi, ZHANG Su-Hua, ZHAN Yong, ZHANG Hai-Lin. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity [J]. Chin. Phys. Lett., 2008, 25(9): 3165-3168.
    [4]LIU Jian-Lin, FENG Xi-Qiao. Capillary Adhesion of Microbeams: Finite Deformation Analysis [J]. Chin. Phys. Lett., 2007, 24(8): 2349-2352.
    [5]CHEN Ming, LUO Hong-Wei, ZHANG Zheng-Xuan, ZHANG En-Xia, YANG Hui, TIAN Hao, WANG Ru, YU Wen-Jie. Ionizing Dose Effect of Thermal Oxides Implanted with Si+ Ions [J]. Chin. Phys. Lett., 2007, 24(6): 1775-1777.
    [6]WANG Yong, JIA Hai-Qiang, MAI Zhen-Hong, JIA Quan-Jie, JIANG Xiao-Ming. Investigation of Microstructures of AlAs Oxides Before and After Oxidation [J]. Chin. Phys. Lett., 2004, 21(6): 1128-1130.
    [7]WEI Zheng, ZHAO Ya-Pu. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope [J]. Chin. Phys. Lett., 2004, 21(4): 616-619.
    [8]WEN Hai-Hu, YANG Hai-Peng, LU Xi-Feng, YAN Jing. Superconductivity at 31 K in Alkaline Metal-Doped Cobalt Oxides [J]. Chin. Phys. Lett., 2003, 20(5): 725-728.
    [9]QIAO Rongwen, ZHAO Zhongxian. Relationship between Tc and σ J in Doped Superconducting Copper Oxides [J]. Chin. Phys. Lett., 1991, 8(6): 307-309.
    [10]SUN Jiansan, QI Zhenzhong, LIU Ling, YAO Weiguo. AN EXPERIMENTAL INVESTIGATION ON ADHESION OF IRON IN CONTACT WITH IRON AND COPPER [J]. Chin. Phys. Lett., 1987, 4(5): 209-212.

Catalog

    Article views (803) PDF downloads (765) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return